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STUDY OF PHOTON CORRELATION TECHNIQUES

FOR PROCESSING OF
LASER VELOCIMETER SIGNALS

By William T. Mayo, Jr.

Summary

The objective of this contract was to provide the theory

and system design for a new type of photon-counting processor

for low-level Dual Scatter laser velocimeter (LV) signals which

would be capable of both the first-order measurements of mean-

flow and turbulence-intensity and also the second order time

statistics: cross-correlation, auto-correlation, and related

spectra.

This report provides a general Poisson process model for

low-level LV signals and noise which is valid from the photon-

resolved regime all the way to the limiting case of non-station-

ary Gaussian noise. Computer simulation algorithms and higher

order statistical moment analysis of Poisson processes have

been derived and applied to the analysis of photon correlation

techniques. A Dual Correlate and Subtract frequency discrimina-

tor technique is postulated and analyzed. Expectation analysis

indicates that the objective measurements are feasible. Error

analysis for the mean-flow case indicates that practical
transonic wind tunnel measurements are possible with 100-1000

times less light than is required for burst-counter processors.

A system design for a new high-speed photon processor for LV

signals is provided. Accesion For
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INTRODUCTION

The Problem

Classical laser velocimeter (LV) electronic signal pro-
cessing techniques are sometimes inadequate for detection of
light scattered by -mal1 scattering particles which are required

for following fluid motionz. In other situations detection of

larger scattering particles ic difficult due to limited system

sensitivity. Photon counting techniques offer improved system

sensitivity by allowing velocity mueasurements to be made even

when there are insufficient sigral photons available to define

the classical scattering signal. Such techniques are thus appli-

cable when the presently used classical burst-counter and fre-

quency tracker-techniques are not.

The general objective of this contract was to provide the

system design for a new type of photon-counting processor for

low-level Dual Scatter LV signals which would be capable of both

the first-order measurements of mean-flow and turbulence-inten-

sity and also the second order time statistics: cross correla-
tion, auto-correlation, and related spectra. This was to be

accomplished by extending the preliminary feasibility analysis

developed under a brief NASA Langley sponsored study* in early

1974. In addition to theory, the system design would incorporRte

judgement basedson experience in the experimental hardware devel-

opment [1] of a related, but simpler, photon-counting processing

system designed and constructed for the U.SA.F. Arnold Engi-

neering Development Center to measure mean-flow velocities.

*The final report for that study (Contract NASl-13140)

was informal and not disseminated. This report contains
revised versions of all the necessary mathematics.



Background

Signal modeling.- Earlier modeling efforts have treated

LV signals for which the noise could be considered as additive

independent, stationary, and Gaussian [2,3,4,5]. This is the

limiting case of stationary Poisson shot noise which occurs for

visible light photodetection when a steady light source such

an a heterodyne reference beam [2] or high background light

level [3) dominates the signal. In a recent simulation of low-

level dual scatter signals, the accuracy of the noise model was

u(t)

t/

X(t)

Ct) •

Sti

Figure 1. Triply Stochastic Nature of Low-.Level
LV Signals: Turbulence, Bursts, and
Photo electron Pulses.
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extended by treating it as a nonstationary Gaussian process

whose variance is proportional to the incident optical power.

When we discuss "noise" in LV signal detection we are

usually referring to the variation of the electronically

detected signal with respect to a scaled version of the classi-

cal optical (power) signal incident on the PMT. In a general

analysis the classical LV signals are also random processes due

to the random amplitudes and the arrival times of the signal

bursts. Mayo [2] and Adrian 17] have treated these signals as

a Poisson process for steady flow, and Durrani [4] and George

[8] have treated them for the turbulent flow case as Gaussian in

the limit of high particle number density. A new book by Snyder

(9] treats generalized Poisson processes in great detail.

Papoulis (10] provides a good introductory treatment. Snyder

treats "doubly stochastic Poisson processes." These are inhomo-

geneous (nonstationary) Poisson processes for which the rate

function is a random process. Such a description is appropriate

either for the classical LV signal bursts with the random turbu-

lent flow affecting the rate of burst occurrence or for the

single photoelectron pulses from the PMT with the random classi-

cal bursts as the rate function. Clearly, when taken from the

turbulence to the photo-electron pulses, a dual-scatter LV signal

is a "triply stochastic" filtered Poisson process [11]. This

three level nature of the signals is illustrated by Figure 1.

Classiual signals and burst counters. Presently accepted

burst-counter and frequency-tracker LV processors were developed

by analogy with wide-band frequency modulation (FM) and radar
receivers. For FM and radar applications frequency detection

(zero-crossing) circuits generally require about 10 db signal

power to noise power ratio within the bandwidth of the system

filters. The signals in such cases are continuous and the noise

*Modified version of noise model described in (6].
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is stationary and Gaussian. Comments by several speakers at

the 1975 Minnesota LDA Symposium indicated that they had

experimentally determined that their burst counter LV signal

processors failed significantly when the signal power to noise

power ratio (during a burst) was less than 10 db. This 10 db

condition occurs when there are approximately 10 or more photo-

electron pulses per electronic response time Th' This response

time is rise time or pulse width in the case of low-pass fil-

ter. We have also defined this signal level as the lowest

value of the "Gaussian" signal regime wherein the photomulti-

plier current can be modeled as the classical signal plus non-

stationary Gaussian noise; (although neither Snyder [9] or

Papoulis (10] give any helpful rules as tn when this asymptotic

approximation is valid). For lower signal power the signals

must be treated as Poisson.

Photon resolved signals and photon counting.- A radically

different approach to LV signal detection has been taken by

Pike, Oliver, Jakeman, and others. Photon counting techniques

were developed for use with low-level photon resolved signals.

The summary results of several years of development of the

single-clipping real-time photon correlator were described by

Oliver and Jakeman in a recent book f12]. Dr. Pike described

the application of photon-correlation to the processing of LV

signals at the 1972 Purdue conference (13]. The presentation

was apparently not received well by many attendees from the

United States and little has been done in this country with the

development of photon counting techniques until recently.

Increased interest was shown by attendees of the 1974 Purdue

Conference.

One reason that the single-clipping correlator has been

slow to acceptance in this country is that the original theory

for its use was based on the assumption of many scatterers in

the probe volume with the central limit theorem invoked to

4



render the statistics of the scattered electric fields Gaussian.

Since this assumption is known not to predominate in many appli-

cations of fringe-type LV systems in air, none of the first

theory for a single-clipping correlator was directly applicable.

Another problemwith the existing commercial correlators for

high-speed air flow besides speed (minimum time resolution of

50 nsec) is the lack of any straightforward way to extend the

concept to the determination of flow time statistics such as

correlations and power spectra. The system proposed in this

report addresses this latter deficiency as well as eliminating

the problems of interpretation of single-clipping by using full

multiplication.

Several recent references provide additional valuable

background information on photon correlation. Durrani and

Greated (14] provide a derivation of the expected value of a

photon correlation from single particle (Poisson) signals.

Birch et al. [15] have made experimental measurements in turbu-

lent jet flows with skewed probability density functions.

Abbiss et al. (16] also provide an analysis which shows that in

some cases the Fourier transform of the correlogram may be

interpreted as the probability density of the fluid velocity

component. * Durrani and Greated [17] have investigated the use

of some of the newer spectral estimation techniques which allow
greater resolution from the limited number of data points in a

typical correlogram. Finally, the reader should be aware that a

new photon correlator instrument has been developed which was

described by C. Fog (18] but the minimum time resolution inter-

val is 160 nsec which is rather slow for high speed wind tunnel

applications, (It was used for atmospheric studies.)

*We do not believe this will be a good approximation in
many practical cases. This is discussed in a later section.

5



Burst rate/amplitude distributions.- The statistical dis-

"* tribution of Xhe classical burst amplitudes and the rate of

occurrence versus amplitude are very significant in the charac-

terization of any LV signal processor. It is generally accepted,

for example, that the optimum rate of occurrence of bursts for

a burst counter is less than the inverse burst duration (non-

overlapping bursts.) It is also generally known that the error

check circuits cause a burst counter to emphasize larger ampli-

tude (good signal to noise ratio) signals. On the other hand,

* a photon counting processor must emphasize the lowei amplitude

* signals in a distribution; the higher amplitude signals would

* produce only a single threshold crossing and otherwise be

neglected by the system. It is therefore not possible to compare

"*: two different types of signal proceseors without knowing the sig-

nal amplitude distributions and the processor behavior as a

"function of burst amplitude and other factors. Finally, in

order to relate processor behavior to a specified particle size

distribution, one must first relate the particle size distribu-

tion to the burst amplitude distributions and then do all the

other things already discussed.

During the initial phases of our recent work for the USAF

Arnold Center we addressed such questions as are suggested by

the above statements both with theoretical models and with

experimental measurements of burst rate/amplitude distributions

for natural laboratory (unfiltered and unseeded) air. The reader

is referred to the final report [1] for details. The following

is one of the concluding paragraphs of that report:

The statistical distribution of the amplitudes and
rates of occurrence of classical bursts has been shown
to be central in the problem of specifying or predicting
the data rates and errors from any type of LV signal
processor. Differential and cumulative rate/amplitude
distributions have been formulated and analyzed theo-
retically and have been measured experimentally for an
argon backscatter LV system. The results indicate that,
for the data obtained, the smaller aerosole contribute

6



more to the photon correlation accumulator than the
larger ones. For the data measured, there would
have been available less than 300 signals per second
adequate in magnitude to produce burst counter data
from scatterers larger than 0.7 Pm in diameter
while there would have been over 100,000 signals per
second producing photon resolved signals from 0.2 -
0.3 pm diameter particles.

Scope

In what fo'..lows we first develop general Poisson models

for LV signals which include the non-stationary Poisson occur-

rence of photo-electron pulses and the random amplitude effects

of both the photomultiplier tube and the particle scattering

cross sections. Formulas are provided for conditional and

unconditional moments including mean, variance, auto-covariance,

and higher moments (Appendix A). These formulas are for signal

current, but they become valid for photon counting by a suit-

able choice of the PMT output filter impulse response function.

The next section evaluates the theoretical expressions

for a specific Gaussian burst LV waveform model. These results

are used to obtain the expected value of a photon correlation

estimate. In addition a Dual Correlate and Subtract estimator
which behaves as a statistical frequency discriminator is postu-

lated and analyzed. The following section is devoted to statis-
tical error analysis of the mean flow estimation technique using
the Dual Correlate approach. The section after that shows that
the statistical frequency discriminator may be applied to the
estimation of turbulence correlations even though the time hist-

ory of the velocity fluctuations is not available except as a

noisy randomly sampled waveform.

The results of the theoretical considerations and the exper-

ience we have had previously with the AEDC [1] hardware study

were utilized in a system design which is provided in Appendix
D. Appendix C is a derivation needed in the section on variabil-
ity errors. Appendix B provides the theory and an example pro-
gram for correct Poisson simulation of low-level LV signals for

evaluation of electronic processor models.

7



LIST OF SYMBOLS

*: ENGLISH

* B bandwidth

Cii(tlt 2 ) autocovariance of i(t)

e electronic charge

f frequency

f M mean Doppler frequency
f( ) optical probe volume response function; pedastal

function, peak amplitude normalized to unity

gi random single-photoelectron charge gain

h Planck's constant

h(t) impulse response of PMT and succeeding filters

H(W) Fourier transform of h(t)

i counting index
i(t) photocurrent at anode or succeeding filter output

I optical intensity

*: j counting index

k counting index

mi(t) time varying statistical mean current <i(t)>

m n n -n n or other function of n
Ak k k-p k k-qk
MP photon correlation sum at delay PAT

Mpq accumulation of (pAT,qAT) for Dual Correlate Mode

n(tl 9 t 2 ) photoelectron count in interval (tl,t 2 )

n k photon count in AT interval about kAT

N number of time increments AT (T w NAT)
Nf number of fringes in the transmitter defined l/e 2

probe volume

N t total number of AT intervals in advanced concept
operation

p integer delay number in photon correlation;
largest delay number in dual correlate and subtract

P b constant optical background power
P(t) optical power incident on photocathode
q integer value of delay
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rj location of the nearest approach of scatterer to
center of probe volume

R constant rate of signal bursts

R(t) instantaneous rate of signal bursts

RX(T) autocorrelation of X(t) =<X(t)X(t+T)>

S(t) a generalized Poicson shot noise signal (Appendix A)

t time

t i Instants of photoelectron emission

T total data collection time

Tm inverse of mean Doppler frequency 1 /fm

u(t) time varying velocity component

U(t) total velocity component

U mean velocity component

7(t) vector velocity

wo0 1/e2 intensity radius at beam waist
x(t) Poisson impulse process

GREEK

a integration dummy variable; also 1/e half-width
of burst

8 integration dummy variable

8(t) Dirac delta or unit impulse function

At simulation time resolution interval
AT photon processor counting interva3

AT accumulation interval for second level correlation

e error

A(t) time varying mean rate of photoelectron pulses
X(t) = nP(t)/hv

X b steady bkckground photoelectron rate

peak photoelectron rate (pedastal) from the jth
scatterer

X 0 optical wavelength
Xs amean signal photoelectron rate 0 <X)>

n product of photocathode quantum efficiency. nd
dynode collection efficiency
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V optical frequency

p fractional turbulence intensity au./u 4 c /Wm

a• Wrms deviation of the radian Doppler frequencies
from scatterers

a2( ) time varying variance of i(t): <(i(t) - <i(t)>) 2>
T delay variable

Th rise time or pulse width of low pass h(t)
Tj occurrence time for jth signal burst

o' beam intersection angle; spherical declination
angle from direction of incident light

* polar angle

Poisson parameter
W Fourier transform variable or radian frequency

W •random frequency of Jth burst

W•, mean of random variable wj (2wfm)

Special Notation

<X> statistical expectation of x - f xpx (x)dx

f(t,)*g(t) convolution: f f(C)g(t- O)da

denotes an estimate of a statistical average
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STATISTICAL THEORY OF DUAL SCATTER SIGNALS

Poisson Models

The Signal Current.- The signal current from a photomulti-

plier tube (PMT) is modeled as inhomogeneous filtered Pcisson

random process (see Appendix A and also reference [19]) given by

[.,. ~ i(t) - egih(t- ti). 1

where t1 - random time of the ith photoelectron

e - electronic charge

gi w random charge gain of PMT

h(t) - impulse response of PMT/filter system

The syiem response h(t) is obtained as a convolution of the PMT

impulse response h p(t), the transmission line impulse response

ht(t), and the linear filter impulse response hf(t)

h(t) w hp(t)*ht(t)*hf(t) (2)

where the asterisk denotes the convolution integral.:

f(t)*g(t) if(a)g(t- c)dc (3)

The superposition assumes operation in the linear range of the

PMT electron multiplier. The use of the function h p(t) assumes

that all single photo-electron pulses have the same shape except

for amplitude. This neglects minor random shape variation.

The quantity which relates i(t) to the classical optical

power is the statistical mean rate X(t) of occurrence of the

randomly occurring photoelectron pulses. Thus

X(t) - np(• (4)
h1

Is



where - product of cathode quantum efficiency and the
dynode collection efficiency

hv - Photon energy

P(t) - Classical optical power, including background
light and a constant component for dark current.

The effects of dark current are included by adding an

equivalent power Pd* The model could be made more exact by add-

ing a separate dark pulse summation with a separate distribution

of amplitudes which are distributed somewhat differently than

gi; but this distinction will not often be required in LV appli-

cations.

The previous material includes little which restricts it

to LV signals. We now consider the form of X(t) which is also

treated as a filtered Poisson process,

Superposition of classical single burst signals.- Rigorous

electromagnetic theory analysis of the scattered fields from

more than one scatterer in the probe volume shows E20] mixing

terms in P(t), the classical power incident on the PMT. However,

in typical dual-scatter systems, the diffraction limited spot

size of the collecting lens is much smaller than the probe vol-

ume; conservation of energy arguments show that in such cases

the number of scatterers in the probe volume may be much greater

than unity with statistically negligible coherent mixing, regard-

less of the quality of the collecting lens (2]. This is signif-

icant even for LV systems which only trigger on isolated large

signal bursts because we must also include in the model the

effects of smaller scatterers which may exist at higher number

density. We will take the position that at the PMT the classi-

cal power P(t) is the superposition of the backgrouhd light

power and the power from individual scatterers without coherent

mixing cross terms. This will be acceptable so long as the aver-

age number of scatterers in one diffraction limited resolution

cell of the receiver is less than unity.

12



A second consideration concerns the background light.

Even when we neglect coherent mixing of signals, there are fluc-

tuations in the classical background power. Bertolotti [21]

provides a review of these effects. Broadband background sources

can be largely suppressed by the use of narrowband spatial and

wave-length filters, but not always adequately enough for meas-

urements from small scatterers. If the background is modulated

(for example fluorescent lights) the mean value signal is easily

removed by electronic filters, but the non-stationary noise is
not. When the broadband background is "steady" there are actu-

ally significant classical fluctuations at rates up to the opti-

cal bandwidth, Bertolotti shows that when the optical filter

bandwidth is much greater than the PMT electronic bandwidth, the

photoelectron statistics behave as though the classical fluctua-

tions did not exist (they are averaged out). Laser light scat-

tered from windows is not broadband and may exhibit undesirable

fluctuations. This background should be minimized, and its

effectu studied further,

The random process X(t).- With cognizance of the preceding

discussion, we model P(t) as the summation of a constant back-

ground Pb which includes broadband, laser, and dark current

sources and an inhomogeneous filtered Poisson signal process.

hvX(t). - P(t) +-ii h
Lb X b Xf(t vjf(t- Tj (5)

where TJ - occurrence time of Jith scatterer reaching ri,

X - random peak amplitude parameter,

V a vector velocity of the jth scatterer,

7 1 a location of nearest approach of the scatterer
trajectory to the center of the probe volume, and

f(t,V,*) w normalized optical system response function.
The notation in equation (5) explicitly shows that in general

the shape of a burst (including signal period, signal envelope,
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and pedestal) is a function of the scatterer vector velocity and

trajectory location. The response also has random X amplitude

which depends on both trajectory and particle scattering cross

section. In general the set of instants T are independent

Poisson random events whose instantaneous rate, R(t), is statis-

tically correlated with the velocity vector.

Discussion of the model.- Equation (5) is cast in a gen-
eral form which obscures certain details with generality. First
it assumes that the velocity of a scatterer remains constant

while in the probe volume with a value V(Ti,* ). The extended

theory of filtered Poisson processes is sufficiently general to

encompass the fact that the functional form of the optical

response function f(t,V,Y) depends on two vector random varia-

bles.* However, Snyder (9] assumes that the vector random

parameters are independent. We are not certain at the present

time what the statistical dependence of the rate function R(t)

on the velocity V(t) may imply, but no serious consequences will

result with low turbulence flow,

Conditional Signal Statistics of the Photocurrent

At times the models for the systems analysis problem may

be simplified until analytical methods are applicable. In these

cases the use of conditional statistics will usually simplify
the analysis. Papoulis (10] discusses the use of conditional

statistics at length. We utilize this technique at length in a

later section. Basically for a multilevel random process the

technique consists of assuming the higher level random processes

are known and deterministic, evaluating conditional expectations

assuming the higher level processes, then evaluating the expec-

tation of the result with respect to the higher level processes.

First we will consider statistics of i(t) assuming the classical

optical signal X(t) is known.

*Elementary shot noise theory is restricted to an impulse
response function which is constant in shape.
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Instantaneous mean, variance, autocovariance.- The result

in Appendix A may be applied to determine the instantaneous mean,

variance and auto-covariance of the signal. These are given in

terms of the function X(t). The results are as follow:

mi(t) - <i(t)> - e<gi>X(t)*h(t) (6)

2a 2 MW <Mt) <i(tl> 2> e 2<g2>X(t),h 2 M (72

C ii(tl~t2) 0 <i(tl)i(t2)> -<i(tl)><i(t2)> (8)

"= e2 <gf > f X(a)h(tl- a)h(t2- &)dc

where < > denotes statistical expectation and where the asterisk

again denotes the convolution integral. These results include

the specification that h p(t), the impulse response of the PMT

anode, have unit weight, i.e.,

I hp(t)dt - 1 (9)

in order to maintain conservation of charge. The functions

ht(t) and hf(t) may include amplification or loss factors and

need not have unity weight.

Conditional noise and SNR.- The concept of signal-to-noise

ratio arose in communications theory when the "noise" was an

additive stationary Gaussian random process totally character-

ized by a mean, mean-square deviation (variance), and a power

spectral density. The ratiu of the peak or average signal to

the rms noise was a useful measure. The preceding equations

show the mean-square deviation (variance) to be an instantaneous

time function which is related to the classical signal. Observa-

tion of real LV signals on an oscilloscope display or computer
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simulations such as that shown in Figure 2 show that the concept

of signal-to-noise-ratio is not an adequp.te figure of merit

without careful specification.

For an example SNR definition, we consider a low-pass PMT

impulse response as a rectangular function:

h(t) - Rect (t/Th) (10)T h h

where

Rect (t) - 1, ItI < 0.5 (11)

- 0o Itl > 0.5

If we now also assume that T h << Tm where T. is the signal

Note: absolute magnitude
of noise greatest
at signal peak
where the "signal-
to-noise ratio" is
maximum

Figure 2. Computer Simulation of LV Signal
using Algorithms similar to Appendix
B. (By J. F. Meyers NASA Langley.)
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period of interest, then we could obtain an instantaneous SNR

from equations (6) and (7) as

SNR(t) a m2 (/a2 ()2 x2 2/<i>Xt/ (12)
a( - t)/> X(t) - ?T. (t)/< ) (t)/¶h

<gI>2- •-• X(t)th

where the quantity <gi> 2 /<gi2> is typically between 0.5* and

1,0 with magnitude depending on the relative variance of the

PMT single photoelectron pulse gain. For an ideal tube the

quantity X(t)Th would be the instantaneous SNR. This is not

useful since it is a time function instead of a number.

As 6n alternative, we may take the local time average of

the SNR given by (12) over a single cycle near the peak of the

pedastal. This would give, for an ideal PMT,

SNRAVpeak x X Th (13)

where X is the peak value of the pedastal of the jth signal

burst, if we assume sparse non-overlapping bursts. We observe
that equations (6) through (8) are valid when h(t) is a bandpass

function, but (13) is then meaningless unless we redefine Th
for a bandpass h(t). Also we note that this definition would

be necessary for meaningful use with a burst-counter processor,

since it is the bandpass filtered AC signal to wide-band noise

power that is significant in that case.

Signal Regimes.- The idealized quantity SNRav peak given

in equation (13) as XjTh is at least a useful quantity in defin-

ing a classification system of signal regimes for a low-pass

*Typical rms values are 0.707 or greater ([22],page 66).
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filtered signal. The following definitions of a photon-resolved,

a photon-limited, and a Gaussian signal regime have been some-

what arbitrarily* identified:

The signal is photon resolved if Th << 1. In this case
the probability of two or more photoelectron events occurring

within the response time Th is small. Its appearance is that

of individual pulses which vary in height due to the randomness

of gi. Photon counting methods are appropriate. The condi-

tional mean value of i(t) is still proportional to X(t), but

there is no visible resemblance to X(t). This condition is

illustrated by the extreme right hand portion of Figure 2.

For XTh >> 1, the signal i(t) is asymptoticaJly a nonsta-

tionary Gaussian Process. In this case the first and higher

order probability density functions for i(t) at any set of

instants (tlt 2 l...) may be determined immediately by plugging

the mean, variance and auto-covariance from the preceding equa-

tions into well known Gaussian formulas. Under these same con-

ditions the signal display appears to the eye as a classical

signal mi(t) plus Gaussian noise. This condition is approached

by peak of the trace in Figure 2. The major difference between

this case and that of classical communications theory problems

is that the a value for the noise is signal (time) and system

dependent. Usually, signals in the Gaussian regime are suitable

for processing by classical methods (burst counter and/or

tracker).

The photon limited regime is that for which ATh is within

an order of magnitude of unity. No mathematical simplifications

are possible. Visually the signal appears as shown in all but

the lowest portions of Figure 2. The upper limits of photon

See Papoulis [10] page 571, No specific limit on the
magnitude of AT. is given. We define the photon limited regime
as 0.1 < XTh < 10.
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counting techniques and the lower limits of conventional tech-

niques both fall in this range.

As we have illustrated, the signal classification may

apply to different portions of the same waveform. We may also

use the classification with respect to the peak pedastal value

Xj h to classify signal bursts. Under this type of classifi-

cation, Figure 2 illustrates a photon-limited burst whose peak

average SNR is less than 10. Additional bandpass filtering

would increase Th and place the central portion of the burst in

Figure 2 in the Gaussian regime. This would not be possible

with a significantly weaker signal.

Unconditional Statistics

Long time mean, variance, autocovariance.- Equations (6) -

(8) include the assumed deterministic classical signal X(t) which

is proportional to instantaneous optical power. When we wish
later to evaluate the long-time average result which accumulates

during a photon counting experiment, it will be necessary to
treat X(t) as an ergodic random process with long-time average
equal to the unconditioned statistical mean:

<X(t)> X X (14)

We also make use of the autocorrelation of X(t):

<X(t)X(t+T)> - RX(j) (15)

Now from equation (6) taking the expectation with respect to

X(t) gives the average current as

<i> = e<gi><X> f h(t)dt (16)
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where the integral is unity unless h(t) includes preamplifi-

cation or attenuation external to the PMT. In order to deter-

mine the long time variance a 2 we do not get the correct

answer by taking the expectation of a 2(t) given by equation
(7). Rather, one determines the conditional value of <2(t)>
by adding the square of (6) to (7). The expectation with

respect to X(t) follows; finally, the square of equation (16)

is subtracted from the unconditional expectation of i 2 (t). When

all these steps are completed, and similar ones for the uncondi-

tional autocovariance, we obtain:

a12 e 2e.09 >2~ f R (a)fh( a)dcx + <g 2 ><X~> f 00h 2(a)do (17)
i-00 -00

- <g,>2<X>2 (f h(a)do)2]

- C0

Cii(T) = e 2[<g,> 2 RX(T)*fh(T) + <gi2><X>fh(T) (18)

- <Kj> 2 <X> 2 (1 h(c)da )2]

where

fh(T) - f h(a)h(a+T)da (19)

The second term in the expression for Cii(T) vanishes for T

greater than the impulse response time for the PMT and filter

combination; the last term ie the square of the mean; the first

term is the correlation of X(t) smoothed by Lhe correlation of

h(t) with itself.

Ideal photon correlation.- An idealized photon correlator

counts all photoelectron emission events during successive uni-

formly spaced clock periods of duration AT. The number sequence
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{nk} which result .s algebraically manipulated to yield the

summation of terms nknk+p. In evaluating the expected value

of the result of accumulating such a sum we encounter the need

to evaluate the quantities <nk> and <nk + nfk+p>. These expec-

tations may be evaluated using equations (16) - (19) by assuming

h(t) a Rect(t/AT) (20)

g- w l/e

where Rect(t) was defined in equation (11) and

fh(t)dt 0 AT (21)

With these assumptions, i(t) is equal to the number of photo-

electron events in the interval (t- AT/2, t +AT/2) and the

formulas reduce to

- <nk> -<>AT (22)

var nk C1 2 .<nka -<nk>2 AT f RX(a)A(")da (23)k . k k _W f _Tc) ~U

+ <XA -<X2A2

<nknk+p> - Cii(PAT) + <i>2  (24)

- ATRx(T)*A(T/AT)I.pAT,p0

where the correlation integral of equation (19) produces a tri-

angular function, i.e.

Rect (L-) Rect (-+)da - MA(T/AT) (25)
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where

A(T/AT) - 1 - ITI/AT , ItI < AT (26)

-0 , IT> > AT

We observe that the generally accepted result that the photon

correlation is shaped like the correlation of the classical

signal is true subject to the jump discontinuity at zero delay

and subject to the triangular weighting function which behaves

as a low-pass filter with respect to the details of Rx(T).

"When AT is much smaller than a characteristic signal per-

iod, then equations (23) and (24) simplify:

k <nknk+p AT R%(pAT), P • 0 (27)

A AT 2 RX(O) + <X>(T, pa0

var n = c, 2 0 X>AT + AT2 (<2> - <X>2) (28)
k i.

i.e.,

var nk = <n k> + AT 2 var X (29)

This last result, which we obtain as a special case, has also

been given by Bertolotti [21]. It provides a way to measure the

variance of the classical signal even with photon resolved sig-

nals if a long sequence of nk values are available.

PHOTON COUNTING PROCESSORS FOR MEAN
FLOW AND TURBULENCE INTENSITY

In this section we provide an idealized theoretical basis

for the use of photon correlation and a new type of photon
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counting technique, "dual-correlate-and-subtract," and show how

they may be used for mear-flow and turbulence intensity measure-

ments. Extensions to higher order statistics are discussed in a
later section. Error analysis of the processors described in
this section is presented in the next section.

Specific Signal Model

The form of equation (5) is quite general. In most prac-
tical systems, the function f(t,Vj,Fj) which describes the opti-

cal response with respect to particle position and velocity is

complicated when the effects of limiting pinhole apertures and

variable duration due to high turbulence are included. For the
present we assume a simplified low turbulence model which assumes

a burst with perfect contrast and constant shape:

X(t) Ub + I X f(t- T)[l+cos Wj(t -j)T (30)

where X - random burst pedastal amplitude

X b = constant background rate,
f(t) - low-pass pulse waveform with peak equal unity,

T w occurrence time for Jth burst,

w a radian frequency proportional to one velocity
component of the Jth particle

We may write equation (30) as the sum of a constant, Xb' a low-

pass process, ,p (t), (the pedastals), and a bandpass process

Xbp(t). Then

X(t) - Xb + X p(t) + Xbp(t) (31)

We assume that there are several fringes in the probe volume so

that the spectra of X,,p(t) and Xbp(t) are non-overlapping. Thus

Xbp(t) is a. zero-mean process, and X ip(t) and X bp(t) are uncor..

related. We obtain
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RX(T) - <X(t)> 2 + C p(T) + C bp(t) (32)

We now use the low turbulence assumption and further assume

that the scatterers are uniformly dispersed in space so that,

R(t), the rate of burst arrivals is a constant R. The results

of Appendix A can be applied to derive expressions for the

three terms in equation (32), the result is

<Xt>MXb+ R<X > 1f(t)dt (33)

C X~p(T)- <•X i> f(t) f(t+r)dt (34)

C~bp(T) a R<2>1 j <cos WT> f(t)f(t+ T)dt (35)

where the expectation of the <co0 WT> term is with respect to

the random variable w The derivation requires that we expand

the product of cosines with the sum and difference formula and

approximate the integral of the product of a low-pass term and

a bandpass term as zero.

We now assume that the turbulence is Gaussian with mean

radian frequency wm and rms deviation aW. Then by direct appli-

cation of the definition of expectation we obtain*

2 2
<corn WT> = f _i_. e corn WT d/ (36)

1 • corn WmT

*In general <coB WT> is simply related to the statistical

characteristic function for the random variable w since this
function in defined as a Fourier transform of the~probability
density function [10].
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A simplified expression for the autocorrelation of the classical
.signal is thus

RX(*) a (X + R<X > f f(t)dt) 2  (37)

"a 2.T2/2 do
+ ROi >I + 1 ecoo wT) f(t)f(t+T)dt

This result shows that regardless of the shape of the envelope

function f(t), the autocorrelation function has a consinusoidal

variation at the mean signal frequency and a Gaussian envelope

decay factor due to turbulence intensity,

If we now assume that the classical bursts are Gaussian

-shaped (TEMoo beams without aperture effects), then we have

t(t) a e-t (38)

where a is the 1/e half width of the envelope and obtain

S

f f(t)dt - V a (39)

ff(t)f(t+ T)dt = 411 e-T 2/2a 2
-,u

The final simplified expressions for the first two moments of

)(t) are

<>- <X(t)> X b + R<Xj> T a (40)

2 21 1 / 2,22
()- 1;> +R<)>•'( + e coo W m)e" - (41)

where low percent turbulence has been assumed and
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Xb " background count rate,

R - scatterer arrival rate,

A * a random pedastal height from Jth scatterer,

a i 1/e half burst duration,

a- a rms deviation of radian frequency due to turbulence,

wm = mean radian frequency (W/wm << 1), and

T delay variable of autocorrelation.

The-shapes of typical correlation functions for zero tur-

bulence and 10%-turbulence are illustrated in Figure 3.

Idealized Photon Correlation of LV Signals

The number nk is'the number of photo-electron emission

events in the interval which extends ±AT/2 from the

instant kAT. An idealized photon correlator produces and

sums delayed products from the uniformly spaced sequence {nk}.

We assume the total number of products accumulated is N. TheA

accumulator produces a sum M at the delay value pAT given by
p

N

"P ki nknk+p (42)

The ideal photon correlator would simultaneously accumulate Nn k

defined by

A N
Nn k nk (43)

1

The unconditional expected value of these sums is obtained from

equations (22) and (27) after interchanging expectation and sum-

mation as

p<Mp> a N<Uknk+p>

- NAT2 R(pA( ), p P 0 (44)

- N[<X>Ar + AT2 RA(0)], p-O
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Figure 3. Autocorrelation Functions of Classical

Burst Signals.
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<Nnk> = N<A>AT (45)

By combining equations (40) - (45), we may obtain an esti-

mator for the autocorrelation of X(t), i.e.,

U 1 N
AX(PA nnn p • 0 (46)

(PAT t~Nkl
!•:";' •(PAT =A-i-(• - Nilk)9 p.=0

AT N

2"=--W n k(n k-1), P= 0

AT N k-i

This estimator includes the zero delay value, which is usually

omitted, by making use of the separate mean count computation.

The samo mean count estimate nk may be used to estimate the long

delay level

<n 2 - <X(t)> 2 *RX() (47)
<ik/Ar>

Interpretation of an autocorrelation estimate computed

according to equation (46) involves, first, the use of an ana-

lytical model such as equation (41); second, a parameter extrac-

tion procedure, such as a mean square error minimizing curve fit

algorithm; third, a correction for any statistical bias errors;

and fourth, a variability error criterion 'which assures that

sufficient data is accumulated. We have provided a procedure

and an example model for the first step. The bias and varia-

bility errors are discussed in a later section. We have not

considered the optimization of the second step although one

method is discussed below. Some literature (15,16,17]is begin-

ning to appear, but further effort is needed.
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At the Denmark LDA conference in the suruner of 1975,

Abiss et al. C16] described a "new" interpretation of a photon
correlellogram as the Fourier transform of the veloc.ty proba-
bility density function. This "breakthrough" allows the meas-
urement of the probability density of the velocity field by
digital Fourier transform of the correlation results under the
condition that the pedastal and fringe envelope correlations
are nearly constant over the range of delays for which the sin-
usoidal correlation is appreciable. This result is equivalent*
to the interpretation of spectrum analyser displays (connected
directly to the photo-detector) years ago as the probability
density of the velocity field. The restriction is equivalent
to requiring many fringes in the probe volume so that the transit-
time spectral broadening is small. Our equation (35) shows the
relationship between the probability density function of the
velocity (frequency) samples and the correlation. The expres-
sion A6os wT> is the cosine Fourier transform of the probability
density for wj. When there are many fringes in the probe volume
the envelope correlation term is a broad pulse which is essen-
tially constant over the extent of <cos wT>. In that case, the
transform of the correlation is actually inverting the statis-
tical characteristic function tp produce a scaled probability
density.

The unfortunate truth remains that in most practical LV
problems, the probe volume and spatial frequency of the fringes
must be small with the result that we rarely have the luxury

of having many fringes in the probe volume. For the realistic

case, then, we find the spectrum to be the convolution of the

velocity probability density function and the transform of the

envelope correlation, and care is required in interpretation.

*At least in theory: the photon correlator is much more

efficient at low signal levels than any swept frequency spectrum
analyser could be.
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A Photon Counting Frequency Discriminator

This section describes the basis for a statistical mean

frequency discriminator for photon resolved LV signals. We

begin with a historical description of the motivating logic

which way offer insight to others for more advanced development.

Autocorrelation Frequency Discrimination.- It is well

known that the autocorrelation function oe a zero-mean narrow-

band random process is cosinusoidal with frequency equal to

the mean frequency of the narrow-band process and envelope

which is the autocorrelation of the amplitude and phase envelope

of the process. For example, if the two-sided power 8 (f) of

a random process x(t) is

S (f A(f- fm) + A(f + f) (48)

Where A(f) is an even pulse-shaped function and fm is a center

frequency much greater than the frequency width of A(f), then

Rx(T) a 2 Ra((T) cos 2vmT (49)

Where A(f) is the Fourier transform of R a(T). Now we note that

for small perturbations of the argument 2 ¶TTfm about the point

T - 3/4 fm (50)

the value of Rx (T) varies in proportion to the perturbation of

either T or fm. Thus, if T is selected to satisfy equation

(50), then the statistical autocorrelation function would serve

instantaneously * as a frequency discrimiuator fur small deviations

*This is significant in later sections even though the

statistical autocorrelation function cannot be experimentally
observed.

30



of fm If the random process were ergodic, then the same
results would apply to time-average autocorrelations when the

averaging time was long compared with the coherence time of the

process. These principles may be extended to a random process

which is the sum of a narrow-band process and a low-pass pro-

cess by first filtering the process with a high-pass filter to

remove the non-zero mean low-pass process.

Application to photon resolved signals.- In the case of

photon-resolved LV signals, the classical signal random process

is not necessarily recoverable from the sparse single photon

events, but we have already shown that the autocorrelation

function may be approximated by the expected value of a photon

correlation operation on the photon events. The original con-

cept was thus to devise a high-pass digital filter which would
be applied to the count sequence {nkI to remove the effects of
background light and low-pass pedastal from the statistical

average <nk) while leaving the bandpass information signal

information. This filter would be followed by a digital corre-

lation (delayed product summation) at the delay value given by

equation (50). Since the digital electronics had to be very

fast, only simple digital filters could be considered. The

simplest one that we thought of was to delay the sequence {nk}

by one-half period of the signal and subtract. This operation

cancels the low-frequency portions of the expected value of

nk and adds the sinusoidal portions in phase. Such a delay and

subtract filter would produce

mk =nk - nk-q (51)

Where the counting interval AT must be adjusted -to satisfy

qAT = 1 I(2fm) (52)
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with q an even integer. After this was done one would accumu-

late lag products of mk with delay pAT equal to three quarters

of a signal period p - 3q/2. This approach leads one to formA•

the summation M pq given by

N

p k l - nk P k-q + 2 nknk '.p - nknpk'p-q (53)

The previous results for photon correlation are applicable for

the determination of the expected value of the quantity ko .pq
The details are omitted here and included for the simpler dual-

correlate approach described below, but Figure 4 is a simplified

discriminator characteristic for the expected value of the

result. It is provided for comparison with Figure 5 which is

described in detail below.

After all of the above reasoning, it occurred to us that

another approach (we thought) consisted of performing the delay
and subtract filtering operation on the correlation estimate

after it was made rather than on the high-speed signal sequence

{nk). Reference to Figure 3 shows that a one-half-period shift
and subtract of the typical LV correlation will approximately
cancel the low-pass portion of the autocorrelation. The results

of this approach provide an approximate discriminator response

as shown in Figure 5 with less high-speed data arithmetic

required. This "dual correlate and subtract" approach also
leads to larger frequency range for the discriminator function,

and thus has been chosen for development. Hindsight has now
shown us that by algebraic rearrangement this approach is most

economically implemented with high-speed delay and subtract

filter prior to multiplication. This technique may be shown

to be just another implementation of the original filter and

correlate concept.
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Dual correlate and subtract.- We will let the quantity

S•pbe defined as follows
pq

9 al mk (54)
-k-i

'E" N

I( nnknk-p) - N(nk nk-q)

where

mk - nk(nk-p - nk-q) (55)

It is straight forward to show that, except for a few end
AA

terms, is mathematically identical to the quantity M -Mpq p q
where •P and 9q are defined by equation (42). It 'is for this
reason that we will lable the approach as the "Dual Correlate

* and Subtract" technique even though the delay values are nega-
tive instead of positive..* We now demonstrate that the expected

* value of M behaves as a frequency discriminator as illustrated

in Figure 5 Under conditions which we will identify. The

adjustment of the system clock period AT leads to a null in the
expected accumulator value. Measurement of AT provides a direct
measure of the mean signal frequency as we shall now show with

our simplified signal models.

From equation (44) we obtain the expected value of the

estimator as

2pq> - NAT 2 [flX(pAT) - RX(qA¶)) (56)

The complete expression is obtained for our simplified signal

*The negative delay implementation was more suitable for

the hardware design.
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model by using equation (41) in its entirety. Here we assume

that pAr and qA'r are both small compared with a so that the

pedastal terms cancel as well as the steady term. This leaves

<4pq> - NAT2R<X> >a. (57)

2 2(--.)(LT2  wW~r

' Cos WmPAT - e cosmmqA.

Now we require that

p - 3q (58)

and observe the behavioi of equation (57) near the values of

AT specified by letting qhT be one quarter of the signal per-

iod where both cosine terms will vanish.

qA - 27/4w m - T m/4 (59)

The shape of the term in braces is plotted in Figure 5

under the assumption of many fringes in the probe volume

(a large) and low turbulence (a, smali). Thus the quantity

plotted is simply

[cos 3qAT Wm "" cos qAT w 1m (60)

Figure 5 illustrates the expected behavior of the accumulator

sum for changes in the mean signal frequency wm. If the sys-

tem clock frequency is changed to change At, then the response

is the product of AT 2 and the curve shown in the figure. The

shape of the curve is affected but the zero crossing locations

are not.

35



Selection of delay constants.- The theory does not

uniquely specify the relationship of AT (the above system clock

period) to Tm the signal period because q is not specified.
For a given value of signal period, Tm, the largest possible

value of AT for an a'.ceptable null is when q - 1 and
AT w Tm/ 4 . this produces the least variability error (as we

will show) and the most bias error due to time smear (the tri-

angular weighting function in equation (24). The value q a 1
also aliows the highest signal frequencies to be measured for
a.given maximum system clock frequency. The bias errors can

be reduced at the expense of increased variability error and

reducea maximum signal frequency by using q - 2, AT - Tm/8.
In Order to facilitate experimental research, our design for a

'research 'instrument allows selection of p and q over a wide

range.

STITISTICAL ERROR ANALYSIS

Introduction

The two principle types of error which arise in statis-

tical measurements are bias error and variability error. Bias
error is a term which refers to the difference between the

statistical expectation of the measurement system output and

the desired average value being measured. The variability

error is the rms value of the random deviation of a specific
experimental result from the statistically expected value. For

ergodic random processes, the variability error converges to

zero in the limit of infinitely long data collection time; but
it converges to an acceptable level (which must be defined in
tho measurement objectives) within a finite measurement time.
The bias error cannot be removed by further averaging but it
can often be removed by analytical compensation or by experi-

mental calibration when it is small compared with the desired
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quantity. In general, analysis of both types of errors is

required in any statistical measurement.

There are three different methods for evaluation of the

statistical errors of a measurement system; these are: analysis,

simulation, and experiment. Appendix A provides theory for the

higher order moments of inhomogeneous Poisson processes which

we have expanded for application to the demonstration of con-.

cepts in the previous sections and analysis of errors in this

section. The study of the theory of Poisson processes has also
provided the concepts necessary for digital. simulation of the

LV signals and their detection by photon counting systems.

The concepts and a FORTRAN computer program which we have

developed for this simulation are provided in Appendix B. The

simulation provides a method of investigating such nonlinear-
effects as processor dead time and counter saturation which we

have not yet been able to do with analysis.

Bias Errors

The sources of bias errors which have been studied in

the !4ieasurement of mean flow are as follows: fringe number,

turbulence intensity, time smear, and dead time.

Fringe number and turbulence intensity.- When the number

of fringes N in the probe volume is small, subtraction* of

RX(T - 3 Tm/ 4 ) - RX(T - Tm/ 4 ) is slightly negative instead of

zero. The error becomes significant only for small values of

NV, The signal frequency estimate using the zero criterion

will be too small. We have computed the error in percent in

the following manner.

Let R,(3qAT) - RX(qAT) A *(qAc). For large number of

*This error pertains to the dual correlate and subtract

technique.
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T
fringes (N-o) then *(qAT) - 0 when AT -_ where Tm is the

mean signal period. When No, then

RX( 3 Tm/ 4 ) - RX(Tm/ 4 ) - Ac - *(AT - Tm/ 4 ) < 0 (61)

Ae
The correct value of qAT for *(qAT) w 0 is qAT T Tm/4+

VTm7
and the fractional error e in accepting ý(qAT) - 0 as indica-
tion that qAT - Tm/ 4 is approximately

4 1$)(Tm/ 4 ) (62)

Tm*'(Tm! 4 )

We have evaluated e for various levels of p - rms turbulence/

mean velocity and for Nf - number of static optical fringes in

1/s signal width.

The result of the parametric computations are presented

in two forms in Figures 6 and 7. From the results we conclude

that the bias error is not very sensitive to turbulence

intensity at the levels shown. A first order correction inde-

pendent of turbulence is thus possible. A second order correc-

tion is possible with only very imprecise estimates of turbu-

lence intensity.

Time smear error and correction techniques.- The photons

represented by the count nk at time kAT were in fact smeared

in occurrence time over the range [(k- 1/2)AT, (k+1/2)AT].

The effect of this is usually neglected by assuming AT is small

compared with any significant variations in the classical sig-

nal. This is never true in the most difficult experimental

cases where the electronic speed limitations force AT to be an

appreciable function of the signal period Tm. The result pro-

vided in equation (24) for photon correlation included the time

38



'wei

6'.

LVI00

~O q
•uuz.yl••z•. q0



smear effect in the triangular function A which convolves with

,. the autocorrelation of'the classical signal. After equation

'. (26) the triangular function was treated as a delta function,

i.e., in the limit of small AT,

SA('r/AT) +6(T) (83)

and equation (27) results from the convolution.

Now, if we do not make the limit assumption,* we note

that the effects of the triangle function are easily displayed

in the frequency domain: From Bracewell [241 we have the rela-

tionship

f A(-/AT)e sine2 (fA) (64)

where

sinc (fAT) - ffAT (65)

This Fourier transform relationship is illustrated in Figure 8.
The convolution theorem of Fourier transform theory assures us

that in the frequency domain, the effect of the convolution in

equation (24) is a product. In other words, the frequency

spectrum associated with the signal correlation by Fourier

transform is attenuated by a low-pass filter whose form is

mine (fAT). This function is plotted in Figure 8c. As the

figure shows, there is little attenuation when fmAr - AT/Tm =1/16

i.e., when the clock period is 1/16 of the signal period. For

The effect of time discretization is a sinc2 (f) type of
low-pass filter. This is similar to a result in our previous
work of determing turbulence power spectra from randomly tried
samples (23].
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Signal Part of R,(T) Weighting

ýAT a Tm/4
--AT w T /8

Tmm

I.m

r(a) Triangular Weighting Functions corresponding to choices
.for A'T relative to mean signal period. (illustrated at
"delay locations for Dual Correlate Approach)

sinc 2x AMf

(b) Fourier transform relationship of & and sinc2 function

4 f/T
11 1 1 1.0

(c) Low Pass Filter effect of AT selection.

Figure 8. Time Smear Effects of Finite AT.
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very low turbulence and a large number of fringes NfV the

signal spectrum would be small in width and AT could be made

as large as Tm/2.* However, for values of AT > Tm/ 8 we see
that a correction of the velocity probability density function

could be useful for all but very small turbulence levels.

Such a correction would be effected by multiplying the trans-

form of the correlation estimate by 1/sine 2 (ATf) prior to

final data interpretation.

Dead time effects.- No physically realizable photo-

detectozr and electronic counter combination can be constructed

without some dead time; i.e., a period of time following a

threshold crossing by the analog photodetector voltage wave-

form during which no additional crossing events will be

counted. This dead time is typically 10 nsec for commercial

photon discriminator circuits at the time of this writing.

There is no fundamental reason why this cannot be reduced to

less than 5psec with the fastest photomultiplier tubes and

counting circuits now available. We will also distinguish two

other types of counting dead time. The first of these is

"pulse pile up" in which the photodetector analog waveform

remains above the threshold level due to there being more than

one photoelectron event within the pulse response time of the

photo dftector. There is also a brief interval during the

periodic counting interval during which the counter is being

reset and is not available. This is true even when two counters

are used alternately, since a small guard interval is required

to keep both counters from counting the same event. Practical

dead intervals Tr may be on the order of 2nsec or less.

*This limit could be actually exceeded because the

sampling theorem really refers to bandwidth, not maximum fre-
quency; however, the attenuation would then be severe.
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The counter dead interval T will be considered first

since it is the simplest. To first order it can be neglected,

but correction in the formulas is simple. It is only neces-

sary to replace AT by AT-Tr in the theoretical formulas where

the AT refers to the counting width. The amount of delay

remains equal to some integer multiple of AT. As a simple

example the mean value of nk becomes <X(t)>(AT-T r) instead of

The effects of pulse pile up are least known for the

photon-limited signal cases. For higher photon rates the PMT

analog waveform will generally remain above the photon counting

threshold and so produce no counting effects. The pulse pile

up effects can be studied with the present signal simulation

program (see Appendix B) when a more complete processor simu-

lation subroutine is completed in the future. At present the

photon processor simulation is idealized so that discretized

photoelectron event times are used directly without synthesis

of the PMT anode waveform and a threshold crossing circuit

model.

The effects of discriminator dead-time effects have been

presented analytically by Jakeman* for the case of Gaussian

optical electric field statistics. We have not yet extended

the theory to the single-particle LV signal situation (non-

Gaussian field statistics) and can offer no improvement analyti-

cally here over Jakeman's results. However, we dispute Jakeman's

conclusion*that in practice dead time errors are not a serious

limitation of photon correlation. The seriousness of the

effect is demonstrated below using the computer simulation pro-

gram provided in Appendix B.

We have simulated a wind tunnel instrumentation
example with the conscants given in Table 1. The results are

*Page 116, (12].
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Theory Program
Symbol Name Value Description

T TTOT 10- 3 see Total time limit

MNTOT 3x 103  Photoelectron limit
Enk KMAX 480 Number of At's per burst
<X > AFAC 10 7 /see Mean peak pedastal rate

HIGH 10 Max X - High.<Xj>

I LOW 0.1 Min X a Low.<X >
j j

IR2 4 X AFAC (not random)
1/R TB 5X10" 6  Mean time between bursts

THEORY TRUE Logical: Selects ideal
processor

MAXC 10 Maximum count of processor
(high to avoid limitation
here)

11D 8xl07 sec l/e2 half width of bursts
CON 3 D CON - Total burst width

AME 1.0 Burst modulation index

fm FO S.25 x 10 6 Hz Signal frequency

AT/At ITAU 4 Ratio of processor resolu-
tion to simulation resolu-
tion

IP 20 Maximum correlation delay

WAVE TRUE Logical: True-Bursts present
Xb -0 CONST FALSE Background: True-Xb present

T d/At DEAD 0,1,2,3,4 Dead time in At units
At DT 5 nsec Simulation resolution

interval

AT DT*ITAU 20 nsec Processor resolution
interval

ONE FALSE Logical: Time-Dual Correlate

TABLE 1. PARAMETER SELECTIONS FOR DEAD TIME SIMULATION.
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plotted in Figure 9. For comparison, the figure also shows

the theoretical expected value of the accumulator sums as

predicted by the following equations. We use the values in

Table 1 with equations (40), (41) and (44) to obtain the

mean level <X(t)> as

<X> = 2.005 x 106 photoelectrons/sec (66)

T
2

A~ co2(5.fm)e(66 xlo-
p > o80.4+ 283.6 (l+ cos2( m Oe (67)

where

T 0 (pAT)- p(20x10-9 sec)

fm a 6.25 x 10 6 Hz

From Figure 9 it is clear that for dead times which are an

appreciable fraction of the clock interval, there will be die-

tortio:a of the correlation functions. This does not appear to

be a problem for AT - Tm/8 except at the first delay valve and a

general amplitude reduction but further study is needed. The dead

time effect is seen to seriously affect the first delay; this

will seriously affect the dual correlate approach if AT - Tm/4.

Variability Error

In this section we derive formulas for the fractional rms

error of a mean flow measurement with a dual correlate and sub.-

tract system in terms of the mean photon rate and the system

response (integration) time. We assume that the accumulator

sum is zero after summing for total time T. This implies that

the clock frequency is in error by an amount required to cancel

a random (finite time) variability error in the accumulator sum.

These compensating errors are assumed small so that a perturba-.

tion may be used.
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- Theory (Ideal)
O Dead Time - 0

*Dead Time - 0.25AT

/ Dead Time - 0.5AT

600 * Dead Time - 0.75AT

o Dead Time - l.OAT

500

,400

-0o

200

100

5 10 15 20

Number of AT delay units

Figure 9. Simulated Effects of Dead Time on
Photon Correlation.
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An error LA in the accumulator sum is equivalent to an

error eT in the estimation of one quarter of the mean signal
obtained by dividing by the slope of the discriminator function
A(T)

CT A LA/A'(Tm/ 4 ) (68)

where A(T) is an abbreviation for Mpq > given earlier in equa-
tion (56) and (57). The fractional error e in estimating the
period Tm is thus

C A/A'(Tm/ 4 ) 4 A (69)

This is the same form as equation (62) with the only difference

being the type of error. We proceed by obtaining a simplified

expression for A(Tm/ 4 ) by neglecting the Gaussian exponentials

in equation (57). Evaluation 6f the derivatives gives

A'(Tm/4) "NAr2 R<N 2> 41m a (70)

m

The quantity eA is the rms deviation of the accumulator value

Mpq after data collection time T. The evaluation of this

quantity is discussed ini Appendix C and the result for cases

where the steady background light is larger than the signal is
obtained.* For this case we have

C A X b AT (71)

When these results are combined we have the fractional error

in the velocity estimate given by

*This is simpler to evaluate than the low background
case and gives a bound on the time required to produce a given
error in cases where the background is less,
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2b(72)

owiT'T R <X >IVF

where
X a background photoeleotron rate >> signal rate

a - burst l/e half width
<X2> - mean square peak pedastal burst amplitude

(photoelectron rate)

R - rate of occurrence of bursts

T - total time a NAT

ADVANCED PHOTON PROCESSOR FOR
TURBULENCE TIME STATISTICS

Introduction

In this section we propuse and analyse a photon-processing

scheme for estimation of the temporal autocorrelaiton of the

time varying velocity fluctuations. Part of the has4.s for this

is the fact that the frequency discriminator characteristic of

Figure 5 applies not only to the long time average of the dual

correlate and subtract sum 1p but also instantaneously in a
pq

conditional statistical sense. We ,iy thorefore tune AT to the

value which centers the long-term average at the zero of the

frequency characteristic and then obtain short periodically

occurring accumulations of Apq whose conditional expected

values follow the velocity deviation. Even when tile photoelec-

tron rate is small, the correlation of the velocity fluctuations

may then be obtained by conventional digital correlation of

the sequence of short time pq's.

We define here AT as a period greater than AT, the

processor counting interval, and less than the significant

times of change of the turbulent fluctuations. The quantity

Spqn is a sum over the interval ((n-l)AT < t < nAT] of

defined in equation (55) as
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mk M n k (nk-p - n k-q); (73)

i.e., Apqn a--2 over the nth AT interval. We will considerpqn pq

an autocorrelation estimate of the 9pqn sequence:

Nt-i
RO(iAT)" • f- i kpqngpq(n+i) (74)

We will show that the expected value of this sequence contains
the shape of the turbulence autocorrelaution function under
certain conditions. Further it appears that the magnitude of
the turbulence intensity may be obtained by a normalization
procedure which will be discussed.

Spectral Analysis of Randomly Sampled Signals

Continuouus Functions.- In our previous development [231
we showed that correlations and frequency power spectra can
be obtained from randomly timed discrete samples of a velocity
component u(t) where the sampling function z(t) is a uniform
Poisson impulse process. The same principles may be general-
ized to the present more complicated data processing problem.
First, let us assume that a continuous sigral s(t) is available
such that

s(t) - x(t)p(t) (75)

p(t) - u(t)/U (76)

where u(t) is a zero-mean time-varying velocity component
deviation from the mean component U and the random process
x(t) is a filtered Poisson shot noise process (see Appendix A)
statistically independent of u(t):
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x(t) = bf(t- ) (77)
moo

Here f(t) is a low-pass impulse response function, the I's
Tj

are random occurrence times which obey a stationary Poisson

law, and the b 's are equally-distributed statistically-

independent random amplitude variables. The functions are

illustrated in Figure 10. From the properties of Poisson

processes we know that if f(t) is a positive function, then.

Rx(T) - <x(t)x(t+ T)> is a positive function and, making use

of the independence assumption

R (T) - <p(t)p(t +T)> (78)
p

SR8 (T)/Rx (T)

We observe that the zero value of R (T) is the normalized

mean-square turbulence intensity <p 2 >. Figure 10 illustrates

the fact that when the duration of the pedastal correlation is

small compared with the duration of the velocity correlation,

the value <p2> may be obtained approximately from Rp(T) where T

in small but greater than the pedastal duration. If the turbu-

lence intensity is obtained in some other manner, we may theo-

retically obtain the shape of It p(T) even without obtaining

Rx(T), except in the vicinity of T - 0, since R x(T) - constant
elsewhere.

We may extend the above reasoning to the situation where

two sets of processes are available

s 1 (t) = x 1 (t)pl(F1 ot) (79)

s 2 (t) - x 2 (t)P 2 (F 2 ,t)

So long as x and x 2 are Independent of p1 and P2 1 then
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correlation

R x(T)
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Figure 10. Random Sampling Waveforms and
Correlation Functions.
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Rs12('() - <s(t)s2(t+)> (80)

40 •l(t )x2(t+• )> <Pl( "lI t)P( -rF2 t+• )>

- RxI 2 (T)RPI 2 (¶)

and the cross correlation Rp 1 2 (T) may be obtained by division

R a 2 •T) - Rei2(T)/RxI2(T) (81)

The frequency power spectra are Fourier transforms of the

correlation functions.

,Sampled Data Estimates.- In the preceding, we assumed

o(t) and x(t) were continuous and computed statistical' corre-

Slation functions. We now suppose that real-valued discrete

samples Sn and Xn of s(t) and x(t) are taken at uniform inter-

vals AT which are small compared with the duration of the

random sampling pulse f(t) and correlation time of p(t). We

may form discrete estimates of Rs(r) and R (T) at t = iAT by

computing a finite time average, for example

Nt-i

zi6(iAT) - N 8n "n +i (82)
t n-i

where NtAT is the accumulation time T and the expected value

is

Rs(iAT)> - Rs(T - iAT) (83)

If such estimates are formed for Rx and R., then we may form

an estimate for R (T) by division:

A .

R (iAT) ý R.(iAT)/Rx(iAT) (84)
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This procedure does not insure that <R (iAT)> is an unbiased
p

estimate but it becomes one in the limit of sufficiently long

accumulation time when the numerator and denominator converge

to their respective expected values.

Conditional Expectation Akain.- The problem is'still

more complicated. Because we do not have the classical optical

signal X(t) available for direct observation, we cannot form

x(t) and s(t), or even Xn and Sn. We will process the fast

photon-counting sequence nk to obtain discrete-valued sequences

Mxn and Msn whose conditional expected values given X(t) are

proportional to Xn and Sn.

We thus have an estimate •e(iAT) defined not by equation

(82), but by

2ANt-i

C2^ (i M an Ms(n+i) (85)

The expected value of the estimate is

<M snMse(n+i)> " < <- snIX(t)><Ms(n+i)IX(t)>> (86)

= C2<S4Sj+i>

M C2 Ra (iAT)

where C2 in the proportionality constant. This result depends
on the fact that given X(t) the discrete random variables

Man and Ms(n+i) formed from non overlapping portions of the

sequence nk are conditionally independent. This follows from

the fact that nk is Poisson counting process.
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In equation (86) the notation <xlX> denotes"expected

value of x given A" and we made use of the fact that the uncon-

ditional expectation may be obtained in two steps: first, with

respect to x given X; then with respect to X.

Application to Photon Processing of

Turbulence Correlation

It remains for us to identify measurable quantities with

the properties attributed to Men and Mxn above and to describe

a means of implementation.

Conditional frequenc 'discriminator.- We now reconsiderA

the estimator Mpq defined in equations (54) and (55). We

restrict ourselves to the signal model given in equations (30)

and (38) with* •b X 0 and with rarely overlapping bursts;

i.e., a -<"l/R. This is the "low density" shot noise case dis-

cussed by Papoulis (103, page 574. For "low density" shot

noise we may use the approximation that [103 if

s(t) - Eh(t - Tj) (87)

then

s 2(t) E h2 (t - Tj) (88)

with theae constraints we obtain

q1knk-pIX(t)> - AT2 X(t)A(t - pAT) (89)

- I _ 2 f(t - Tj){1 + cos Wj(t-Tj)

J --

+ COs Wi(t- T -PAT)+• cos(2w jt- 2w ijTj-Pwi AT)

+ COs P•jAT)

th -sbThe Xc o0 assumption does not affect the result due to
the subt5ac4-on
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In equation (89) the product of cosine terms has been expanded

as sum and difference frequency terms, and the delay pAT has

been neglected in. the envelope function f(t). With mk defined

by equation (55) we may determine <nkmX(t)> from two sets of
A

terms like that in (89). We then determine <Mp> as
pqn

A nL< pqn IX~t)> I <M <klX~t)> (90)
k-(n-1)L

"2" (n-l)AT J j 2 f 2 (t-'r))cos PwjAT

- coo qW AT] + (Band pass termd dt

where

L w AT/AT (91)

In the right hand side of this equation the sum is replaced by

a time integral which it approximates. Since AT is long com-

pared with the Doppler period, the bandpass terms average to ,a

small value; however, since AT was assumed short compared with

the burst envelope duration, the integral does not smooth the

first expression in the right hand side of (90). The result

is therefore

< n A. > "ATATp Xj f 2 (t- T)[cos pATmW-cos qATj (92)

SAAT A2 (t)[cos pATW(t) - cos qATw(t)]

By proper selection of a high speed digital clock period,

AT, the sequence Apqn approximates the sequence Asn described
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above for certain values of the integers p and q. For other

choices of p and q the sequence hpq. approximates the sequence

Mxn. Thus, velocity correlations may be obtained by simul-

taneously duplicating the computations of (73) with two differ-

ent sets of integers p and q, and then proceeding with soft-

ware processing of the two sequences Men and Mxn. To show

this last link in the procedure we examine the cosine differ-

ence term in (92). For the Msnsequence we select p and q and

adjust the variable AT to the conditions given previously for

the mean frequency discriminator in equations (58) and (89).

(p - q)WmAT =r (93)

m

pwmAT - 3w/2

qwmAT w/2

Example selections for p, q and A-r are 3,1,Tm/4; 6,2,Tm/8;
12, 4 ,Tm/16; where Tm =2f/wm is inverse of the mean signal

frequency. Expansion of the bracketed cosine term in (92)

gives

r •r• 4 + 3Sir4 3
+ sin (2-) ( 94)

Ccos PATWj - cos qATwj] - [,in( Im )S(

where we have used the substitutions

•W j - Wm (95)

Lmmcoo3 (Wm + Awj - sin('C,--•

coo (W Aw1)] -sin( )
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Equation (94) was shown plotted in. Figure 5 since it is also

the approximate long-time average frequency transfer charac-

teristic for the mean flow measurement. The trigonometric

substitutions along with the small angle approximation sin e : e

show that for small turbulence levels, equation (92) becomes

t ATATp 2 P(t)ITp(t) (96)s~nl %(t)> Z

Where p(t) 0 Awj/wm during non-zero portions of X,,(t).

Normclizinn sequence.- Under the same selection of AT as

In (93) but with

PWmAT w 2v (97)

qwM T - W

a different effect is obtained. For example, if Man is obtained

with p.3, qul and we let p-4o q-2 in computing Mxnj the

result corresponding to (94) is

[cos pAwj - cos qATWj] = osWm l + coor AWmj (98)

The small-angle approximation for the cosine function is uniity,

so the result corresponding to (96) is

<MxnIX(t)> a ATArX2 p(t) (99)

When we note that Awij/wm - uj/U and that the ATAT term cancels

by division, we see from equations (96), (99) and (86) that

the autocorrelation of M divided by the autocorrelation of Mxn

produces approximately 7r <u(t)u(t + T)>/U2. Except for a fac-

tor of C2 a -2 the result is normalized in such a manner that
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fractional mean-square turbulence intensity is directly obtain-

able from the first lag value of the final autocorrelation

estimate or a projection back to the zero delay value. (The

analysis we have presented is not valid for the zero delay

value without separate consideration. It is possible that cer-

tain effects will cancel and cause this to be a valid point

also.)
Practical considerations.- The approach outlined above

for normalization would require as much hardware to measure the

n sequence an the Men sequence. In addition, the small angle

approximation which was applied to (98) is not valid over a

very large range of velocity deviation. We have conceived two

other less expensive approaches. The first of these consists

of eliminatingthe second Mxn channel completely and relying on

the fact that the shape of the correlation R (T) is approximated

by correlating M*n except in the vicinity of a burst duration

from the delay origin. If it were desirable to normalize the

function at the rest of the delay locations, we could evaluate

.he required division constant as

AT Y 222 Ra(nAT)o, nAT =>> (100)

where we have already discussed a possible estimate for 4 2(t>

in equation (46). Either this estimator or the Mxn approach

described above could be computed with a single channel elec-

tronic system by electronically switching the delay variables

p and q and storing the (Apqn sequences in different portions

of a computer memory before computing the second level corre-

lations. Time sharing like this would not be as efficient in

possible cancellation of some of the statistical variability

error, but significant cost savings would result.
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DISCUSSION

System Design

We have provided a specification for an advanced computer

controlled photon counting processor in Appendix D. The design

allows the system to be operated as a dual-correlate and sub-

tract processor or sequentially as a correlator by time sharing

the multiplier. The system provides synchronous 3-bit X 3-bit

• operations at up to 100 MHz. The design uses "slow" emitter

coupled logic (ECL) which is optimum for the speed range speci-

fied. The system may be operated as an advanced processor by

dumping the accumulator values to computer memory at rates

limited only by the computer. The design allows two identical

units to be used together for either velocity cross-correlation

measurements or for simultaneous second-channel normalization.

An analog feedback loop is provided for automatic mean velocity

acquisition. In addition, the system can be used to measure any

type of multiple-interval photon statistics by selecting the

correlator clock period (continuously variable both manually and

electronically) and using the computer to sample the values of

nk stored in the delay line.

Sensitivity Comparison

There are four primary sources of variability error.

Theme are the random turbulent flow itself, the random occur-

rence times of the scattering particles, the random gcattering

cross sections, and the random time of photon events. Photon

correlation methods are linear in the sense that the effects of

two simultaneously occurring scatterers are added. This is

beneficial in that it avoids the non-linear zero-crossing cap-

ture effect of classical FM systems and thus the error problems
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of multiple scatters; it is not beneficial in the sense that

random amplitude effects will contribute to variability error,

but these distinctions have not been carefully analyzed. The

error versus data collection time trade-offs which result due

to the random occurrence times of scatterers and due to mini-

mum limits due to the turbulence itself have been previously

analyzed for burst counters. That result* may be expressed as

2 1 + 1 (101)

where B is the equivalent power bandwidth of the turbulence,
2

R' Is the mean rate of accepted signal bursts, and <p > and
<E2> are the normalized mean-square turbulence intensity and

mean-square estimate error, respectively:

2> = u(t)>

U2

this result indicates, for example, that for a turbulence equiva-

lent power bandwidth of 2KHz, 10% turbulence intensity, and 0.3%

desired rms error, the data collection time would be at least

0.28 seconds even if the continuous signal U(t) were available

for processing, and would be considerably longer if R' were

less than 4000/sec.

In the following we examine the implications of equation
(72) for transonic wind tunnel meamurements. In order to include
the mean value of the signal bursts along with the assumed

page 10, equation (2.14), reference 123].
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background light in equation (72) we use equation (40) for

<X(t)> and (72) becomes

2(X b + x8 ) (103)

where the mean rate due to signal bursts is

x R<X a > Aa (104)

which is less than the mean peak rate <X > when R is less than

the inverse of the effective burst width, Wc . Now by defin-

ing the variance a 2 of the pedastal peak rates X as

C2 84 <X > - <X 2

we may rearrange (103) as

I <xj>

Although the parametric behavior of equation (105) is

intuitively acceptable in other ways, the presence of the term

[1 + CX2/<X >2 in the denominator seems a little strange.

Increased variability of the scattering cross sections of the

particles would not intuitively decrease the mean-flow varia-

bility error. It is possible that this indicated behavior is

a consequence of ignoring the variability of the classical power

X(t) in equation (71) and has no physical reality. However,

there does not appear to be anything wrong with the derivation
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for the limiting case of high background light so the strange

result may be true. In any event, a conservative bound is

obtained by removing the bracketed expression in the denomina-

tor to obtain an' expression not requiring knowledge of a 2

2LX +
E J 8 (106)

If we evaluate eqaatlon (106) with the following assumed typical

conditions for a transonic wind tunnel measurement we obtain

a required data collection time of 0.5 seconds for a 1% rms

error:

Xb - 107 (107)

S< - I06

-LX - 10 8

In this example, the mean signal photoelectron rate is ten

times loss than the mean background photo-electron rate and

is equal to the average peak envelope rate. With this much

background light, the assumption of constant X(t) should be
valid with respect to the photon-fluctuation induced varia-

bility. The selection of mean peak rate at 107 means that

occurrences of photoelectron count rates greater than ].0 8 /sec

(the limit of current hardware state of the art) will be rare

and the effects of nonlinearity negligible). The selected

ratio of <L•>/X - 10 implies that the measurement volume is

only assumed to contain a scatterer 1/10 of the time on the

average.
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Even though dramatic improvements over the previous exam-
ple situation may result from reduced background light, the

result still indicates that practical measurements may be
obtained with a peak signal photoelectron rate of 107 sec. In
order to compare this with the performance of a burst-counter

system, we must assume values for p, q and fm, the Doppler fre-
quency. With p m 3, and q a 1 the Doppler frequency fm is

1/46T - 25 MHz. This would result from U a 304.8 m/sec with
an optical sensitivity of 82 ktz/m/sec. This peak photoelec-
tron rate assumed is thus 0.4 photoelectrons/cycle in the pres-
ence of 0.4 background photoelectrons/cycle. For comparison we
note that standard optical noise formulas, given A(t) -

XJ(1 + cos wmt) + Ab' would result in peak SNR of

SNR - 4B(- + A b) (108)

In our example, B - 25 MHz and Xb 10i7; if we choose X - 109,
a factor of 100 greater than in our example, then the SNR is
10 at the peak of the signal burst and 1.35 at the l/e signal

envelope points. Since this example represents marginal or
inadequate SNR for burst counter operation we deduce that, even

with 100 times more scattered power, only the larger-than-aver-

age scatterers would contribute.

Under conditions of less background light, the burst-

counter analysis would not be improved; however, the photon

counting system results are expected to improve considerably.
Thus we conclude that mean-flow measurements with from 100-1000

times less optical power are feasible with the photon counting

system.
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Future Work

During this contract effort we have developed simulation

techniques which can be extended to be applicable to all types

of LV signal processors for any level signals. The program in

Appendix B only represents the beginning of how these techniques

can be exploited, and we did not have time under the present

contract to use that program except for check-out waveform simu-

lations and the dead-time example. Similarly, the higher order

moment equations developed in Appendix A have not been yet used

to extend the variability error analysis to include the low

background case.

A system such as that specified in Appendix D should be

constructed and tested. The results in this report indicate

that such a system would a low LV measurements to be performed

which are not now feasible. In addition, the system would be

a valuable research tool for many other fields of research

which require high-speed digital correlation or measurement of

photon interval statistics.
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CONCLUSIONS

The most significant new results which this report provides

are itemized below:

* A general non-stationary Poisson process model for
dual scatter laser velocimeter (LV) signals and noise
valid from high level signals down through photon
resolved signals.

* Computer simulation algorithms valid over the entire
range of signal levels, which may be used to evaluate
any new type of LV signal processor.

* A description and statistical analysis of both con-
ventional photon correlation and Dual Correlate and
Subtract frequency discriminator technique for mean,
turbulence intensity and turbulence correlation
estimations from photon resolved signals.

* A system design for an advanced photon-counting
processor which implements both conventional photon
correlation (sequentially) and the Dual Correlate
concepts with time resolution to 10 neec.

65



APPENDIX A

FILTERED INHOMOGENEOUS POISSON PROCESSES

In this appendix we have used the material from Snyder's

book [9] to derive the higher order moments of a filtered

inhomogeneous Poisson process up through order 4. We begin

with introductory material similar to that given by Papoulis

_nhomogeneous Impulse Processes.

The input to a random linear system is an inhomogeneoum 1,

Poisson'Aitpulse.process *(t) given by

11(t) 6 (t Tj,) (Al):

.where (Ti) is'the set of random occurrence times, k(t) is the

instantaneous stati'tialean value of z(t), (and also the

mean rate of occurrence of the it's), and 8(t) is the dirac

delta function. The random variables T are independent of

each other statistically and obey the inhomogeneous counting

law, i.e., the probability of n- k occurrences in the interval

(tlt 2 ) is

P(n(t 1 1 t 2 ) - k} ) e- (A2)

where

t 2

f- f X(t)dt (A3)
ti

The quantity v is also the mean and variance of the random var-

iable n(tl,t 2 ).
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The Response of a Random Linear System-CLmpbell's Theorem

The output of the random linear system s(t) is the super-

position of the response h(t - Tit Yi) to each input impulse:

s(t) I Z h(t - di' Y1) (A4)

where {Yi) is a set of identically distributed independent

vector random variables. The random variable 7 affects the

shape and amplitude of the response function h(t,Y). In the

case of the PMT signal it may take the form of a single scalar

amplitude variable. In the case of the classical optical sig-

nal from turbulent flow both a random amplitude parameter and

one or more random shape parameters due to velocity magnitude,

direction, and probe volume translational entrance location may

be required. The theory should be applicable so long as the

met of multidimensional random variables Yi is independent of

"the set.of occurrence times (ti}. The generalized Campbell's

theorem results for the instantaneous statistical mean, variance,

and auto-covariance of s(t) are given below, they apply regard-

less of whether individual pulses are resolved or not.

<8(t)> f X(T)<h(t -T,Y)>dT (A5)
-0

2(t) -s 2(t)>- <(t)>2 - f (T)<h 2(t-¶,Y)>dT (A6)
a 0

cov[s(t )s(t 2 )] a <s(tl)s(t 2 )>- <s(tl)><s(t 2 )> (A7)

01 X(T)<h(t 1 - T,Y)h(t 2- T,Y)>dT

where -> denotes expectation with respect to V inside the

integral signs. For a causal signal such as that from the PMT,

where h(t) is zero for t > 0, then the upper limits of
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integration may be replaced by t or the minimum of t and t

in equation (A7). For the transient case where the impulse

signal z(t) is applied at t 0 0, the lower limits of integra-

tion may be replaced by 0.

Higher Order Moments

Oummary of statistics.- Given a filtered, inhomogeneous,

compound Poisson process:

s(t) h(t,•i;yi) (AS)

where Tiare random occurrence times which occur' with intensity
X(t), and where Y are vector random variables which are sta-

tistically independent and identically distributed, we obtain
the following result. The cumulants are:

Yl(tl) - n - )X(T)<h(tlT;Y) > OT (Ag)

Y12 (t 1 't 2 ) ' ý12 X f )(T)41(tlT;Y)h(t 2 ,r;Y)>dT

Y1 2 3 (tl,t 21 t3) - f X(T)<h(t 1 ,T;Y)h(t 2 ,T;Y)h(t 3s,;Y)>dT

Y1 2 3 4 (t 1 ,t 2 ,t 3 1 t 4 ) c c X(T)<h(t,#T;Y)h(t 2 ,T;Y)

. h(t 3 ,T;Y)h(t 4 ,t;Y)> dr

The formulas which relate the cumulants to the moments

are as follows:

1. <G(tl1)> W nI = Yl (A1O)

2. <s(t 1 )s(t 2 )> - "12 + n102

where P12 - covariance - Y12
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3. -W(t )s(t 2 ) (t3 )> Y123 + nfl2 3 + 12"13

n1+ n3u2 + nln n3

4. <S(t 1 )s(t 2 )s(t 3 )s(t 4 )> - y 12 34 + nln2n3r 4

%Y+ l 1 2 3 4 + f2 y 13 4  n3124 +47I23

+ I12P34 + 113ý24 + 414423

,,+ -14n23 + P13 1214 + 012 13 %4

+ 1A2 4 fnriT 3 +'I 2 3 nln1 4 +34%%

The derivation of the above formulas follows.

Derivation.- The derivation of the preceding formulas is

-saightforward but tedious if we are given the Joint charac-

fterintio uncotion

¢( * - > (All)

where

= (Wi W21 W 3 ' W4 ) (A12)

and

Es [s(t 1 ),s(t 2 ) ,s(t 3 ) ,s(t 4 )] (A13)

From Papoulis we know that
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<s(tl)S(t 2 s(t 3 )s(t 4 )> (A14)

-4

(U) aw1 C 2B 3 A 4 aw mOa
'1 24 4 -- 4 0

and similarly for other moments; i.e., we may obtain the moments

*by determining the appropriate partial derivatives of the joint
characteristic function at 7 a 0 which is in turn a vector
valued Fourier transform of the joint probability function for

the random variables s(t 1 ), s(t 2 ), etc.

The theory of filtered Poisson processep provides uswith

the joint characteristic function of the second kind, p, where

* (• - .n * (•) (AI8)

or

* ~(AlV3)

We may therefore either write out *1) and evaluate the

derivatives directly or usý the above equations to first
express the partial derivatives of 0(7) in terms of the par-
tial derivatives of C(O). We have taken the latter approach
using the chain rule. As an example

+ (A17)

The rest of tho derivatives are omitted here since they get
progressively more lengthy.

'e now need only to evaluate the products of partial

derivatives We have obtained at w 0 O. From the material given
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by Snyder we have

* )(t)<eJPOCA)) 1), dr (A18)
-00

where

S•( 1 h(t 1 ,T;Y)+w 2 h(t 2 ,T;Y)+...+ wnh(tn ,T;Y) (A19)

From the form of the expression for i(•) it is clear that

Coo

•1 " X(')<ej -1> dT - 0 (A20)

therefore

(- 1 (A21)

(A)O

It is not difficult to see that the form of the partial

derivatives is

In() J .j X(T) <h(ti,T;T)h(t2,•;T)..e J (7)>dt_

(A22)

i.e., the partials of *(Z) at U - 0 are equal to the same order

cumulant except for the jn factor. With this formula we can

now go directly from the expression of the partials of * in

terms of the partials of * to the desired higher order moments.

The result in that given in the summary. If moments higher

*In Snyder's book, Random Point Processes, equation (4.15)

the lower limit of integriahon is' to correspond to the begin-
ning of the process. The upper limit is the minimum of the
times ti. This assumes that h(tiT;Y) is a causal function.
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than the 4th are needed we would simply apply the chain rule

to determine the higher derivative of * in terms of those of

Moments of a Gaussian Random Process.- We have not yet

expanded all of the moments of a non-zero mean Gaussian

process for comparison. We observe, however, that the factori-

zation property of zero-mean Gaussian processes does not hold

for filtered Poisson process. Otherwise there are great simi-

larities except for the cumulants as

Gaussian Poisson (A23)

<Xl > = •<XI> = nI

1X X2 " 1'2 l2 (xx 2> - •12 +

for (n o)

<X1x 2 x 3 = 0 <X1 X2 x 3 > "Y 1 2 3

<xx 2x 3 x4 > - U1 2 V34 + x13U24 123X4> - 12P34 + U13U24

+ 014P23 + 14P23 + 'l234

(n• 0)

<x4> 3 4 + so2n2 + 4 <x4> C 4 + en2a2 + n4

+ 4n f Xh 3 (t)dt

+,7Xh4(t)dt
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APPENDIX B

DIGITAL SIMULATION OF LOW LEVEL DUAL SCATTER
LV SIGNALS AND IDEALIZED PHOTON PROCESSORS

This appendix provides theory and an example FORTRAN

program for digital LV signal simulation. Background theory
and several more complicated Poisson impulse simulation algo-
rithms are discussed by R& H. Forrester, Jr. in a Masters Thesis

C25] performed under Don Snyder. The simple approach taken

here is to discretize the possible occurrence times of photon

and classical burst signal events to uniformly spaced inter-

vals of length At, where At is less than any significant sys-

tem integration time. This discretization of time imposes

itself upon all temporal system parameters, such as processor

clock interval AT and dead time Td' which would be continuous

variables in the real situation.

Theory

Realization of inhomogeneous Poisson impulse processes.- A

sample function of an inhomogeneous Poisson impulse process is

specified by a set of event occurrence times (ti} as described

in Appendix A. The key procedure required for simulation of

LV signals is therefore the generation of a set {t } given a
specified rate intensity function X(t).. This may be done by

first generating a homogeneous (stationary) process with unit
intensity X(t) w 1 and then mapping the realization time"

through solution of an integral equation. Figure B1 illus-

trates the required mapping in a manner which helps provide

intuitive grasp for what follows.

Let us define the set of interarrival intervals {wi}

between event occurrence times {(j} as
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, X(t)

4,

t(sec)
0 1 ti 2

t Si! ^A¢t) - fo X(t)dt

4p4

4,,.I.

4

-A I/

--- ~~ - (sevc)

_0 1 2

Inhomogeneous Process with X(t)
Figure Bl. Transformation of Unit Intensity Process into

Inhomogeneous Process with Specified X(t).
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w T -T (BI)

For a homogeneous Poisson impulse process with constant rate

intensity X(t)- X, it is necessary and sufficient that {wi}

be a set of statistically independent, identically distributed

exponential random variables with common probability density

Pw(w), given by,

pw(w) -e (B2)

We may therefore generate the set'{(¶} of occurrence times for

a realization of a constant intensity process as

i
T Wk Ti'l + wi (B3)

Commonly available subroutines* generate statistically
independent realizations xi of a random variable x uniformly
distributed on the interval (0,1). The exponential density
function in monotonic with an inverse function which is commonly
available (namely the natural logarithm function). It is

therefore straightforward to determine a transformation which

maps the realizations of the unit uniformly distributed varia-

ble to the desired exponentially distributed variable:

w .( 1 n ) (1)
Xi

In summary, generation of unit uniform random variables x;
which are then transformed by (B4) and used in (B3) produce a

*There is, however, a difference in the quality of these

subroutines; a survey paper by [26] may be consulted if the
validity or efficiency of a subroutine is in question.
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realization of a homogeneous impulse process with intensity
X. Por our purposes, we set X -1 and proceed to the mapping
step illustrated in Figure Bi.

In his recent book* Snyder provides guidance, but leaves
it as a homework exercise to deduce the proof for a method of
rescaling the interarrival times of a unit intensity process

to obtain a realization of a specified inhomogeneous process.
The results are as follows: Let {Ti be the set of occurrence

times of a unit intensity procews as illustrated in Figure Bi.

Let A(t) be the integral of the specified intensity function
S~X~t):

t
A(t) - f (a)da (BM)

0 .

This function is continuous and monotonically increasing and

therefore has an inverse function A-1 such that

T i A(ti) (B6)

Ui A"-1 (T) (B7)

The set of times {t } generated by applying equation (B7) to

the set (ri} is the required realization of the inhomogeneous

process.

Algorithm for simulation of event times.- The subroutines

which generate uniform random variables xk produce real numbers.

If the above equations are applied exactly, one would be forced
to digitally solve an integral equation, thus producing another

set of real numbers {i}. One could carry tae full resolution

*See Snyder (9] page 62.
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of the computer to the bitter end of the simulation. However,

at some point the use of digital filtering techniques to

simulate analog filter characteristics of real photomultiplier

tubes (PMT) and other electronic devices would become appro-

priate. At such a point, the simulated signal would have to

be interpolated and respecified on uniformly spaced increments

with separation At. We may greatly simplify the required

algorithms by rounding the set of occurrence times to the near-

est At interval and point. By incorporating this step directly

into the solution of the inverse function A-1 (Ti) we avoid

the problems of solving the integral equation exactly and sim-

plify that step as well. The entire procedure is thus simpli-

fied to the following.

1. Select a At small enough to provide adequate
accuracy for uniform sampling of X(t) and cal-
culating its integral by the trapazoidal rule
integration method.

2. Beginning at T 0 to - 0, compute realizations

of Ti as discussed above.

3. Calculate the trapazoidal rule approximation
of A(kAt) for each integer value. 0 <k <kmax,

4. Use conditional statements to test the latest

real value of Ti against the integral A(kAt)

as it is generated iteratively to determine a
histogram TC of the discretized occurrence
times at kAt. It is possible, in the simula-
tion, for more than one value of T to be
mapped to the discretized time kAt.

There are many ways that the fourth step could be implemented.

We have elected the following: If the value of Ti lies in the

range

A(kAt) + A[(k-l)At] < T < A((k+l)At] + A(kAt) (B8)

2 - _2

where A(kAt) is the trapazoidal approximation of the Integral,
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then an occurrence is added to the histogram value at k.

Inclusion of random amplitude effects.- When the point

event represents a photoelectron pulse or a classical LV sig-
nal burst, we may wish to assign the event an amplitude mark

(impulse weight). This may be done by separately generating

realizations of additional random variables according to

desired statistics and accumulating one each of these at TC

for each occurrence time. Note that It is not adequate to

simply multiply each value TC by a random variable, since in

some realizations more than one event contributes to the same

value of k.

The statistics of the pulse height distribution of a poor
(PMT) may be nearly Rayleigh, while the Gaussian density with

15-25% relative standard deviation may be adequate to model a

good PMT. Very little documentation exists concerning the

probability density of the classical signal bursts. This topic
is discussed and some data is presented in our recent AEDC

report [1]. Of the simplest densities an exponential density

or a Rayleigh density would be used to simulate amplitudes from
an unseeded flow. As we have shown it does not follow that

the amplitude probability density agrees in any recognizabl. way

with the particle size dietribution; even monosized particles

may produce a very strange amplitude probability density [1].

When it is desirable to use Rayleigh or Gaussian random
variables the following procedure is recommended. Generation

of realizations of Rayleigh or Gaussian random variables may be

obtained by first generating uniformly distributed values on

the interval (0,1). Let x 1 and x 2 be two such independent

realizations. Then we obtain

R -, (-2a2 in xl) 1/2 (B9)

6 - 2x x2  (BlO)
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where R is a realization of a Rayleigh random variable with

parameter a, mean a , and probability density PR(R) given as

PR(R) e c-(R 2 2 , R >0 (Bll)

and 6 is a realization of a uniformly distributed random vari-

able on the interval (0,27T). Multiplying (B9) by /2-7- produces

Rayleigh variables with mean -1. If Gaussian random variables

are desired, the process is continued from (BO) without the

/17w factor by converting to rectangular co-ordinates:

X - R cos 6 (B12)

Y - R sin e (B13)

When this is done, X and Y are two independent realizations of
a Gaussian random variable with zero mean and variance a2 i.e,

Px(X) - 1. ex 2 /2a 2  (B14)

and the same form for py (Y). The above procedure efficiently
produces exactly Gaussian random realizations as opposed to a

program such as GAUSS which sums 12 independent uniform random

variables to obtain approximately Gaussian variables by the

central limit theorem (Forrester [25]).

Example Simulation Program

We have included at the end of this appendix a copy of
the printout of a FORTRAN IV program which is illuatrated in

flow form in Figure B2. The occurrence times of the classical
signal bursts are generated as a homogeneous Poisson process.

The amplitudes of the bursts may be either generated randomly
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Figure B2. Flowchart Showing Namelist Variable
Names and Functions.
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with exponential, Gaussian, or Rayleigh density with a speci-

fied mean, or they may be set equal to a constant. The pro-

gram computes the burst waveforms at each At and sums all that

are present to form a classical signal. This signal is inte-
grated in a trapazoidal fashion and compared with the occur-

rence times of a unit intensity homogeneous Poisson impulse

process simulated as described previously. If random amplitudes

have been assigned to the photoelectron pulses, these are gen-

erated and added to a histogram; otherwise l's are added to the

histogram.
The idealized photon processor portion of the program sums

the values of the histogram (with no random PMT pulse height
effects) over an interval AT which is some selected integral

number (ITAU) of At units in length. The sum is the photon

count sequence referred to in the text as {nk}. The ideal

processor then computes either the photon correlation for delay

values O-IP (ONE n false) or computes and sums the dual corre-

late and subtract terms (ONE - true).
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APPENDIX C

VARIANCE OF THE DUAL CORRELATE
AND SUBTRACT ESTIMATOR

In this appendix we wish to determine a formula for the
mean-square deviation of the estimate p defined in the textpq
equation (56) at value of delay (near Tm/ 4 where the expected

value of p is zero. It was our hope to do this for the
pq

general signal model which we have presented. To complete such

a task requires the use of fourth-order moments of the classi-

cal signal process X(t), and it was for this reason that the

derivation in the last part of Appendix A was undertaken. We

did not have time during the contract period to evaluate and

use the fourth order moments of the general signal. For this

reason we have restricted this analysis to the case where

steady background light is the predominant source of variability

error. (Steady light adds variability error even though it

cancels in the mean.) This simplifies the problem because of

the simplicity of the fourth order moment equations for steady

light (homogeneous Poisson counting process).

We define Apq here as*

pq mk (cl)

mk = nknk+p n knk+q

where the summations will all be from 1 to N unless otherwise

noted. We have

<mk> w <nk><nk+p> - <nk> <nk+q> (C2)

. 62 _ 62 .o

""This derivation was performed with plus signs in the
delay subscripts instead of minus signs. There is no differ-
ence in the results.
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where n1 - n- nATP/hv. From (C2) we have

<2pq> - 0 (C3)

we wish to evaluate var p) . <g2 > -.4 >2 W <g2 >
pq pq pq pq

pq Xmm(4

In (C4) the product of sums was expanded and the order of

expectation and summation interchanged. The i - J terms are

separated because they behave differently.

The terms in the first summation give

2 + 2<nni+pni+q> + <nlni+q>

<n 2 - <nini+p> - (C5)

-<n>[C<n4+p> + <nx+q> - 2<n+p><ni+q>]

- (j + 02)(2(1 + j2) - 2j2) 2 -g2 +-2j3

where the theory of homogeneous Poisson processes has allowed

the factorization due to independent of nonoverlapping count

intervals * and from which we know that

<n -2= + W2 (C6)

Next we must evaluate the i j j terms in (C4). There

are N2 - N such terms but ,nany of them are zero. We have

*At this point for the general nonsteady signal evaluate

<m• > with X(t) conditionally given and then evaluate fourth
oraer moments of the process X(t) which is also Poisson.
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<Inmi> m <nini+pnjnj+p> -<nin i+qnjnj+p> (C7)

-<n ni+pnjnj+q> +<nni+qnjnj+q>

When-all the subscripts are unequal we obtain

<mm> - - - + -0

We are restricted to i 0 j and p • q 0 0. If we examine the
matrix of products m m1 , the only allowable products for which
some of the subscripts of n in (C7) are equal, excluding the

inj case, are found on diagonals parallel to the i-j diagonal.
These diagonals are i j J ± q, i w J ± p, and i - J ± (p-q).
We examine these diagonals separately: for i a j + q

<mm > <nj+q njn+q+pnjnj+p> - J+qnj+ 2 qnjnj+p> (CS)

- 2 nj+qn+q+pnj> + m+qinj+2qnj>

-n -4 _ (W + + (W + -)w2 . o

Similarly for i - j - q, i - J ± p, the result is zero by sub-
traction. For the diagonals i - J ± (p-q), however, we obtain

after substitution and evaluation

<mimi> a _n3  (C9)

For large N we may neglect end effects and observe that there
are approximately 2N terms which result from these two diagonals.
We may now evaluate (C4) using (C5) and (C9) as

<M2 > - N(2)(n 2 + W3) - 2Nii3  (ClO)
pq

- 2Ng 2 - 2N(XAT) 2 _ Var(kpq)

This is the desired result.
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APPENDIX D

SYSTEM DESIGN OF AN ADVANCED PHOTON COUNTING
PROCESSOR FOR LOW-LEVEL LDV SIGNALS

Introduction

A problem confronting us in the present design was one of

complexity and cost. A two channel duplication of the AEDC

processor [1] with the extra requirements of dual-channel

advanced-concept operation would have been prohibitively

expensive. To solve this problem we have made several sig-

nificant changes, some of which utilize the power of a high-

speed computer controller.

Design Approach for the Advanced Processor

Major cost savings are associated with exact duplication

of circuit layout. For this reason, the dual channel system

is designed so that it may be operated either as two com-

pletely separate identical units in one rack; or as two inde-

pendent units with synchronized data (for cross correlations)

or as a one channel system with a synchronous normalizing chan-

nel (same system clock and nk sequence but separate delays).

The counter/timer (C/T) functions needed for system control

were obtained in the AEDC system (1] from a $1500 laboratory

counter, selected because of the availability of options ($285)

for computer control and read. It is considerably less expen-

sive to include the C/T functions in the special-purpose hard-

ware to avoid both the cost of two units ($3570) and the asso-

ciated computer cables, I/0 cards, etc. This puts an even more

stringent requirement on reducing complexity of other circuits

to give more room on the wire wrap panel (162-180 IC sockets

unless multiple panels are used). The following system concepts

have been incorporated.
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1. Eliminate all front panel controls and displays.
The system thus utilizes the display and command
of the controlling mini-computer and cannot func-
tion separately. This saves LED driver integrated
circuits as well as the front panel itself.

2. Use a newer, lower cost voltage variable oscillator
for the system clock.

3. Replace the laboratory counter with ECL counter/
timer (C/T) circuits.

4. Use an external, separate heavy duty ECL power supply
(a 16 Amps) to save space in the system enclosure and
avoid a large heat source in the enclosure.

5. Reduce the maximum count to 3 bits instead of 4
(see following justification). This simplifies
all of the circuits and reduces package count.

6. Reduce the number of control and read data circuits.
(See following discussion,.)

7. Do not require the 3 bit counter to be selectively
saturable. Let it saturate at 7 (111).

8. Remove the single-clipper circuit and the associated
multiplexer.

9. Limit the accumulator to 15 bits + sign to be com-
patible with the 16 bit word ol the computer, Read
the accumulator often enough to avoid overflow.

10. Replace the 4 bit subtractor with a 3 bit subtractor
adder. The add function could be used in one of the
normalization schemes.

11. Include an experimental analog servo loop for zero
adjusting the system clock to the proper multiple
of the mean signal frequency.

Reduction of Counter Bit Number

The maximum periodic rate of discriminator output pulses

is 120 MHz (dead time > 8nsec). The largest random rate is

usually less, say 70 MHz. In order for the count of 7 to be

executed therefore, we assume the count interval to be larger

than 0.1 psec (1/f 0 > 0.4 or 0.8 Psec depending on the delay

choices). Thus we may have the count exceeded for signal fre-

quency f0 < 2.5 MHz or 1.25 MHz. We observe, however, that a
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count of 7 in a quarter of a cycle is a peak rate of 14 elec-

trons/cycle. This is where the burst counter can become

useful. Thus a 3 bit counter is adequate because when larger

signals are present a burst counter processor should be used.

If the larger signals are unwanted because they occur from

larger particles, then saturating the count at 7 will reduce

their effect in favor of smaller signals.

Read logic for photon statistics.- The 16 bit word length

and the high speed of the H.P. 2100 computer will allow straight

forward READ circuitry. Each channel will have a 16 bit T2 L

latch connected to the 15 bit plus sign accumulator. In order

that the counter/timer and the multiple interval statistics

may-be read, selectable steering gates will be used so that the

first 6 bits can be connected to the output of the multiplier.

Sequential numbers may then be read as follows:

1. Set maximum delay in A+B and set one side of multi-
plier to 1.

2. Run data and clock.

3. Stop clock.

4. Read multiplier out with commanded single clock
advance.

This will produce a string of more than 20 sequential numbers.

In order to read the C/T total (8 digits) 32 bits is required

(BCD code). This will be accomplished by sequentially reading

two 16 bit words time-multiplexed to the TTL output port.

Description of Circuits

This section describes the subsystem circuits and compo-

nents which comprise the dual channel photon processing system

one channel of which is shown in Figure Dl.

External subsystems.- The external subsystems are the

following:

1. Two photomultiplier tubes and associated housings
and power supplies.
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2. Six precision 50 n connecting cables.

3. Two preamps.

4. Two amplifier/discriminators.

5. One NIM bin (rack mounted).

6. Two voltage controllable oscillators (1-200 MHz)

7. Two rack-mounted integrated circuit power supplies
and cunnecting cables.

8. A computer with two microcircuit I/O cards (16 bits
in and 18 bits out for each with device command line
and device-ready flag line), and two 36 pair twisted
lead cables with connectors.

Three bit counter.- This is a dual section counter which

stops and holds the count of seven instead of turning over to

zero and continuing. Two counter sections alternate so that one

may have data transferred and be reset while the other one is

counting. In order to avoid the possibility of counting a

border line event twice, a dead time between count intervals

approximately 2 nsec will be incorporated. The dead time

between input pulses (from the discriminator) will be < 10 nuec

with a design objective of 8 nsec. The alternate count inter-

vals will be equal (design objective). A control bit allows
the counter output to the delays to be set to zero (data gate).

Delay sections.- The two delay sections A and B are speci-

fied as A - {0,1,2,3,4,5,6,8,9,10,11,12} and B - (0,2,4,8).

This set a.lows sequential autocorrelations with delays up to

20 in addition to the dual correlate and subtract and the
normalizing modes.

For dual channel operation with one channel normalizing,

a multiplexer is provided which allows the data from the other

channel counter to be selected as delay input. Since the sep-

arate channels are identical physically, each has an input and

an output to the other channel.
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Four control bits select the A delay. Two control bits

select the B delay. An additional bit selects the output of

the other data channel instead of the counter output of this

channel.

Adder/subtractor & mode selector.- In the AEDC unit an

option for subtracting a constant from each nk was included.

The purpose was to ovoid overflowing the accumulator in auto-

correlate mode when a signal with large mean is encountered.

The ability of the computer for high-speed read to DMA

avoids the necessity of subtracting a constant, since the accu-

mulator may be read often to avoid overflow. The two control

bits allow selection of add, subtract, or add zero. The adder

subtractor'output is four magnitude bits plus sign.

Multiplier.- The multiplier has seven bits plus sign out.

A control bit allows the undelayed path input to be set to 001

instead of nk.

Accumulator.- The accumulator has 15 bits plus a sign

bit. It can be reset by a single pulse. It will be implemented

in 2's complement; the computer software will convert to sign

and magnitude. The reset pulse must also transfer the accumu-

lator values to latches in the output port to the computer.

Counter/timer.- This section replaces the external counter/

timer used in the AEDC System. It consists of two R-decade BCD

counters and associated input selectors and controls. Each

counter may select as input either the precision 1 MHz oscil-

lator, the system clock, or the second discriminator output

(external input). A fast prescaler selects divide by 1, 2, or

5 for counter #1. Counter #2 is multiplexed to the 16 bit out-

put port (lst 4 significant decades and 2nd 4 significant

decades separately selectable.) The first counter produces

output pulses at decade counter #1 selector. The package count

does not include multiplexing and read outputs for counter #2.
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A gate generator block does the following: It produces
the pulse which is applied to the accumulator and the computer

flag; it programably reads and resets the C/T; and it produces

a gate pulse between two successive counter #1 output pulses

for application to the counter #2 control gates (counter #2

stops and holds when gate goes back down). The programable

states include: a) read and reset counter #2 at the entry of

the control word (CW) and at each output pulse from counter #1

(PVC); b) read and reset counter #2 CW but not PFC; c) read

and reset counter #2 at PFC but not at CW; d) do not read and

reset counter #2 at either PFC or CW. (This allows, by software,

for counting the photon rate over the duration of an autocorre-

lation sequence and then stopping at the end of a number of

smaller intervals.)

The control bits needed for the C/T are as follows:

Three bits are used to select which of 3 inputs goes to each

of the two decade counters. (Assumes both will not have same

input.) Three bits will select the decade output of the decade

scaler (counter #1). Two more bits select the prescale divisor

(1, 2, 5). Three bits have been allowed for the four read/

reset states (2 bits) and an extra control bit (spare). Finally,

there is one bit which allows application of the control gates

from the other C/T to the accumulator read/reset line instead

of this channel's C/T. (This is for cross correlation with

synchronous accumulator read/reset.)

System clock.- The system clock accepts a periodic wave

form with 1 positive-going transition per cycle) and shapes this

into a periodic pulse train at the ECL voltage levels. It

includes buffer gates for proper fan out (5 packages). It

includes controls which allow the clock to be stopped cleanly

and a one-shot clock pulse generator which can be activated

by computer instruction. This feature allows sequential nk

98



values to be read out of the system for multiple interval

statistics. The control bits are one for on/off and one for

single pulse. There is also an ungated clock line which is

used as an input to the C/T. There is a control bit which

allows the other system clock to be selected (when the other

channel data is used, for example).

Output port.- Each channel has one 16 bit TTL compatible

output port and a 1 bit flag pulse line. The output port

includes a multiplexer (two 16 bit sections of the C/T, the 16

bit accumulator output and a 7 bit output from the multiplier),

a 16 bit latch, and ECL to TTL voltage level translators.

The output multiplexer requires 2 bits of control to select

one of 4 outputs.

At the present time it is not clear which of the following

approaches could be utilized: a) all ECL construction with

only 17 bits of ECL/TTL translator as the output; b) a separate

panel section of TTL circuitry which includes most of the C/T

and the output latches for the output port. The b) approach

would require less expensive IC's and less power for part of

the system. However, the cost of a separate panel and the

panel interconnections may make a) preferable.

Oscillator control.- This subsystem provides automatic

fine tuning of the variable system clock for the determination

of the mean velocity. The mean value of the multiplier output

is negative while the clock frequency is too high. Thus the

intent here is to use fast digital/analog conversion and

analog integration with controllable reset, integration, and

hold states to provide a control voltage to the external volt-

age controllable oscillator. Two control bits are required.

This feature is a research item. It may later prove more

advisable to use the D/A converter with a portion of the
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computer control word bits so that the mean velocity selection

becomes a software task.

Input port.- All machine control is accomplished by 30

bits of information and the time at which certain of the bits

are changed. These bits are latched into the processor input

port 15 at a time by a single line command pulse from the com-

puter. All time-critical bits of control are included in con-

trol word 0. (One of the sixteen bits from the computer is

the address of the control word 0 or 1.) Table D1 provides a

tentative assignment of control bits. The bit number refers

to the power of 2 in standard binary format.

Package count.- An integrated circuit package count esti-

mate of 147 IC's made for one of the two identical channels.

The estimate assumes the use of a panel with 162 sockets and

design for each subcircuit with the same approach previously
developed for the AEDC unit. This leaves 15 spare sockets for
flexibility in design and/or additions. A slightly improved

approach has also been identified which uses 2 bit arithmetic

logic units (ALU) instead of 4 bit ALU's to reduce circuit
speed limitations. This approach would actually pruduce more
useable sockets because the panel would have 180 standard

sockets instead of 150 plus 12 4 bit ALU sockets.
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